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Abstract

It is shown that inverse quantum Zeno effect (IZE) could exist in a three-level system with Rabi oscillations between discrete
atomic states. An experiment to observe IZE in such a system is proposed. ® 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is known that frequently repeated discrete quantum measurements can hinder quantum transitions. This
phenomenon is known as quantum Zeno effect (QZE) [1,2]. This effect was observed experimentally in systems
with forced Rabi oscillations between discrete atomic levels [3] and in spontaneously decaying systems [4]. It was
shown also that there are regimes when repeated discrete measurements can accelerate spontaneous decay [5-7],
and this phenomenon was found experimentally as well [4]. This effect is known as anti-Zeno effect or inverse
Zeno effect (IZE).

In the present Letter the definitions for QZE and IZE are admitted in the agreement with that introduced by
Facchi and Pascazio [8] with one modification. Let the initial pure state of a system with the Hamiltonian H be
po and the survival probability be P(r) = Tr[pop(¢)]. Consider the evolution of the system under the effect of an
additional interaction. The total Hamiltonian reads

Hxk=H+ Hmeas(K),

where K is a set of parameters and Hpeas(K = 0) = 0. H is a full Hamiltonian of the system containing interaction
terms, and Hpeqs(K) should be considered as an additional Hamiltonian performing the measurement. The term
Hineas(K) may correspond to a chain of ideal discrete quantum measurements that are represented by reductions
(collapses) of the state of the system as a special case of interaction. The system displays QZE if there exists an
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interval [ (K) = [tl(K), téK)] such that

PE@ > P@), Viel®, (1)

and the system displays IZE if there exists an interval IX) such that

PR < P(r), Vel 2

Here PX) (1) and P(¢) are the survival probabilities under the action of Hx and H, respectively, and it is required

Pl
téK) < Tp, 3)

where Tp is the Poincaré time. The modification of this definitions is the following. In the addition to the definitions
Eqgs. (1)-(3) it is required:

(i) The measurement Hamiltonian Hpeas(K) should be time-independent or periodical with the period less then
the Poincaré time of the system.

The meaning of condition (i) is the following. Johann von Neumann proved the following proposition [9,
Chapter V.2]. Using a sequence of frequently repeating measurements represented by time-dependent projections
it is possible to force the quantum system pass through any arbitrary definite sequence of states. Particularly, it is
possible to satisfy the conditions of Egs. (2), (3) which define IZE. But such a situation is not actually IZE, rather
it is a dynamical version of usual quantum Zeno effect (dynamical quantum Zeno effect, DQZE). Though DQZE
is considered as “anti-Zeno paradox” sometimes [10], such interpretation seems to be misleading. The condition
(i) is intended to avoid such misunderstands.

It was pointed out many times (see [7] and references herein) that both QZE and IZE can be obtained for
a genuinely unstable system, whose Poincaré time is infinite. On the other hand, the possibility of IZE for an
oscillating quantum mechanical system, whose Poincaré time is finite, was not reported up to now. Actually, only
QZE is possible in two-level quantum mechanical oscillating systems. But it is not generally valid in multilevel
systems with the number of levels more than two. In the present Letter a three-level oscillating system with finite
Poincaré time exhibiting IZE is constructed.

2. Interaction picture for evolution interrupted by measurements

Before discussing of the main subject we introduce the interaction picture formalisms for the problem of
quantum evolution interrupted by discrete measurements. Let H = Ho+ V be a Hamiltonian of a system § and p(?)
be the density operator of the system. Let {P;}, P? = P;, }_; P, = 1 be a complete set of projection operators. This
set of projectors represents an instantaneous reduction of the system state following an ideal quantum measurement.
Change of state during the measurement is

,0/=ZPipP,' El’ép, )

1

where p is the state before the measurement and o’ is the state after the measurement. Let D(¢) df be mean number
of measurements on the system during time interval (¢, ¢ +dt). Then, it is easy to prove that the state of the system
is governed by the Lindblad equation

dp

i 1
Z:—E[HO-I-V,/)]—ED(I)lZ[Pi,[Pi,P]]- <, )
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Let p;(t) and V() be the state and the Hamiltonian of the system in the interaction picture:

i i
pi(t) = exp(E Hot)p(t) eXP(—EHot), ©6)
i i
Vi(t) = exp(ﬁHot)Vexp(—EHot). )
Further, let
[P:, H)]=0, Vi (®)
By substitution of Egs. (6), (7) in Eq. (5) and accounting for Eq. (8) it is not hard to prove that
dps i 1
— =——[Vy,p1]— =Dt P, [P, . 9
=3Vl (),Z-[ i, [P p1]] ©)

Eq. (9) is a generalization of Lindblad equation (5) for the interaction picture.

Let us consider the evolution of the system during the time interval (0, 7). Let to, #1, . . ., z, be moments of time
such that (o =0 <] < -+- < ty_1 < t, =t. Then Eq. (5) and Eq. (9) are also valid for the singular distribution
D(t):

n
D(ty= 8t — ),
k=0
where 8(-) is Dirac’s delta-function. This special distribution D(z) describes the sequence of measurements at the

definite moments of time fg, ¢, .. ., f. It is not hard to understand that the solution of Eq. (9) for this special D(¢)
may be written as

p1(t) = RU; (tn, ta=1) - RUL (11, t0) Rp (t0), (10)
where the superoperator of reduction R is defined by Eq. (4) and the superoperator of evolution

Ur(t",")o=Ui(t",¢)pU; (", 1), amn
is defined by the solution of Schrédinger equation in the interaction picture without measurements:

dpr _

dt

If the system was prepared in the pure eigenstate |¥,) of Hamiltonian Hy at the initial moment of time # = 0, then
it is easily shown that the survival probability P(¢) reads

P(t) = (Wlp1(1)|¥0), (12)
where p;(¢) is defined by Eq. (10).

i
——[Vi, .
h[IPI]

3. Model system

Let us consider three-level atom with free Hamiltonian Hy and eigenstates {0}, |1}, |2):
Holj) =hwjlj), j=0,1,2, wij =w; —wj, I#]. (13)

Let the initial state of the atom be |¥) = |0). The atom interacts with classical electric field consisting of two
components being in resonance with the transitions w1 and w1, respectively:

E(f) = Ejge!" 4 e '@10! 4 By /@2t 4 B} ol x, (14)
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where E;¢ and E»; are complex amplitudes of fields. The interaction of electric field with the atom is
V =-DE, (15)

where D is the operator of dipole moment of the atom. The following relations are admitted to be valid:

|wij|>>|an|» Vi,jvm’ny (16)

lwij — okl > | Vimnl, i, j kG jY# KT, Ym,n, a7)
where Vi, = (m]V|n). .

Let us consider evolution of the atom during the time interval (0, #). Suppose the measurement R to be carried

out on the atom at the moments fo, 11, ..., t, where iy = kAt, At =t/n,n=1, 2,3, .... The measurement R is
intended to find the atom on the level |2). Therefore, the superoperator R reads

Rp = Po1pPo1 + P2p P2, (18)

where

Poi = diag(1,1,0), P, =diag(0,0, 1). (19)

Let us find the probability to find the atom in the state |0) at the time ¢. This probability is the survival probability
P(t) Eq. (12) for |¥) = 10)' To calculate p; (¢) one can use Eq. (10). Further, R in Eq. (10) is already known from
Eq. (18). Consequently, U;(¢”, ') is should be calculated.

Let a(¢) be a three-dimensional complex vector, a = [do, a1, az]. Consider the equation

da(t) i

a1 =—£V1(7)a(t)’ (20)

with initial conditions defined for the time ¢": a(t') = [ag , a(l),ag]. In Eq. (20) V;(¢) is the interaction picture
Hamiltonian for the free Hamiltonian Eq. (13) and the interaction Eq. (15). The solution of Eq. (20) for the time #”
can be written as

a{t"y=U(t",1')a(t’), D

where U, (¢, ¢/ ) is connected with the superoperator U;(t", 1) by Eq. (11). Using Eqs. (14), (15) and the rotating
wave approximation (which is right under the conditions (16), (17)), one can rewrite Eq. (20) as

d {9 0 . Q()lei‘pm 0. ao
_— ai = —l Q()]e—”pm 0 91261%2 aj ’ (22)
dt a 0 Qpe~ion2 0 ar

where the notations
20169 = —(0|D|1)E; /A, 2126'92 = —(1|D[2)Ea /R,

were introduced. The values £2p; and §212 are considered to be positive real numbers. The evolution operator
U;(t", ') can be obtained by solution of Eq. (22) and by comparison the results with Eq. (21):

2% + 02, cosa 201 g0 201212 ;
12 01 —i M ging  — el(¢01+‘/’12)(1 — cosa)
22 2 2
201 i, 8212 o,
u(t',t')y= —ieT sing cosa —i— =2 ging ,
2 2
2 2
————QOIQIZe—i("O‘+“’12)(1 —cosa) —i——‘(zlze_""’12 sino $2, + @iy cos
2?2 2 2?2

(23)
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where

Q=22 +02% a=1" 7).

Now both values, R (from Egs. (18), (19)) and U 1", t") (from Egs. (11), (23)), are known, and the survival
probability for state |0) can be calculated by Eqs. (10), (12).

4. Results of calculations and discussion

First of all let us discuss the mechanisms of IZE in this system qualitatively. For the beginning suppose that the
measurements are absent at all. Since the initial state of system W) = |0) is pure at the moment o = 0 so it will be
pure in future, and the evolution will be governed only by the operator Uy (¢", t'): |W;(t)) = U, (z, 0)|0). Suppose
212 =0. It is seen from Eq. (23) that the evolution of the atom is reduced to the usual Rabi oscillations:!

ao(t) = cos §201¢, ai(t) = —isin $201t, ax(t) =0.
In the converse case, £212 > 201, it follows from Eq. (23) that the initial state is “frozen”:
Vt:  ap(t) =1, ai(t) =0, ax(t) =~ 0.

The transition between states |1) and |2) hinders the transition between states |0) and |1). This is well-
known phenomenon [8,11,12] which is considered as a Zeno-like effect. However, if the transition [1) — |2)
is continuously observed by frequent measurements, then this transition is “frozen” by usual QZE, and the
mentioned Zeno-like effect will be hindered by this usual Zeno effect. Rabi transition [0) — [1) is restored and
this phenomenon is IZE.

To represent the detailed calculations, 212 = £01+/15 is chosen. Hence £2 = 4£2¢; and it is seen from Eq. (23)
that the Poincaré time of the system is

Tp=2n/2 =n/(28201). (24)

Thick solid line on Fig. 1 represents “free” evolution of the atom during one Poincaré time: both resonant
components of electric field are switched on, but the measurements are switched off. Thin solid lines represent
the survival probability of state |0) with different numbers of measurements during the interval ¢ € (0, Tp); the
number near the line is the number n like in Eq. (10). It is seen from Fig. 1 that IZE takes place in the exact
accordance with the definition of IZE by Egs. (2), (3) and condition (i). Moreover, the evolution of the atom tends
to the free Rabi transition between levels |0) and |1) with frequency 2201 as n — oo (dashed line on Fig. 1), as
one should expect.

Note that there are no discontinuities of the derivative d P(t)/dt at the moments of the measurements (see
Fig. 1). This proposition could be proven by using the relation

dP(t) i

- =—g(0|[V1(t),PI(1)]|0),

and Eq. (18). Behavior of the survival probability P(t) under two-dimensional projection measurement Eq. (18) is
different from the behavior of survival probability under usual one-dimensional projection measurement

p' = PopPy+ PipP.

The derivative d P(¢)/dt has discontinuity at the moment of the measurement in the last case.

! Hereafter we suppose ¢g; = @12 = 0 since if the initial state of the atom is |0), these phases do not effect the probabilities to find any
atomic state at any time f > 0. <.
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Fig. 1. Inverse Zeno effect in three-level atom with double Rabi transition. T = ¢/ Tp, where Poincaré time Tp is defined by Eq. (24); P(t) is
the probability to find the atom in the initial state |0). Thick solid line represents the evolution of atom without measurements, thin solid lines
represent the evolution of atom with different number of measurements during the interval 7 € (0, 1).

The model three-level system with double Rabi transition and measurements described in the present Letter
might be realized in an experiment similar to Itano and collaborators QZE-experiment with simple Rabi
transition [3]. The levels |0}, |1), |2) of the atom might correspond to fine or hyperfine structure. Rabi transitions
between these levels might be forced by ultra high frequency or radio frequency fields. In the addition the forth
level |3) should be involved such that it should be higher than level |2) and the transition |3) — {2) should be a
non-forbidden optical transition. The state |3} is to decay onto the state |2) much faster than all the Rabi transitions
involved to the experiment. A short -pulse of laser tuned into resonance with the transition |3) — |2) will simulate
the measurement R, Eq. (18). The probability to find the atom in the state |0) at the end of evolution might be
measured by the usual way [3].
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