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Abstract

A numerical model of spontaneous decay which is continuously observed by a distant detector of emitted particles is
constructed. It is shown that there is no quantum Zeno effect in such quantum measurement if the interaction between the
emitted particles and the detector is short-range and the mass of emitted particles is not zero. © 2001 Elsevier Science B.V. All

rights reserved.
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1. Introduction

The quantum Zeno paradox (QZP) is the proposi-
tion that evolution of a quantum system is stopped if
the state of the system is continuously measured by
a macroscopic device to check whether the system is
still in its initial state [1]. QZP is a consequence of for-
mal application of von Neumann’s projection postu-
late if the continuous measurement is represented by a
sequence of infinitely frequent instantaneous collapses
of system’s wave function. It was shown theoreti-
cally [2] and experimentally [3] that sufficiently fre-
quent discrete active measurements of system’s state
really inhibit quantum evolution such as Rabi oscil-
lations between discrete levels. This phenomenon was
named “quantum Zeno effect” (QZE). Another kind of
Zeno effect is QZE during genuinely continuous ob-
servation of spontaneous exponential transition.

E-mail address: a.panov@relcom.ru (A.D. Panov).

The genuinely continuous observation is a quan-
tum measurement with permanent coupling between
the device and the measured system. This coupling
may be described by a time independent Hamiltonian.
Some schematic models of genuinely continuous ob-
servation of spontaneous exponential transition were
studied for the first time in [4], then in [5,6]. It was ar-
gued in [4] that QZE is very small or negligible, in [5]
that QZE may take place in principle, in [6] that QZE
take place generally and may have different signs: di-
rect or reverse QZE.

The model of genuinely continuous observation of
spontaneous exponential transition related to experi-
ment was studied in [7]. It was the model of observa-
tion of decay by a distant detector. The general expres-
sion for perturbation of decay constant by an observa-
tion were obtained and it was argued qualitatively that
QZE may take place. But calculations with the derived
expression were not carried out due to technical diffi-
culties. Another model was considered in [8,9] — the
model of tunneling of an electron out of a quantum
det with the observation of transition by changing of
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electric current. It was argued in [8] that there is no
QZE in this model, but later the calculations were im-
proved [9] and conclusion was obtained that QZE may
take place if the density of final states of electron de-
pends on energy. A number of effects similar to QZE
in continuous observation of decay were also studied
[10-12]. General conclusion of these works was that
QZE-like effects may take place but the sign of ef-
fects may be different: either slowing down or fasten-
ing up 6f the decay. Thus, the situation with QZE dur-
ing continuous measurements of spontaneous decay is
not quite clear.

Especially difficult questions are connected with
QZE during continuous observation of decay by a dis-
tant detector. Let us consider, for example, a meta-
stable exited atom surrounded by detectors which can
register an emitted photon or electron when the ex-
ited state of atom decays to the ground state. While
the detectors are not discharged, the information that
the atom is in its exited state is being obtained perma-
nently, therefore the system’s state is being measured
continuously. Could the presence of detectors influ-
ence the decay constant of exited atom?

It is impossible to describe this kind of continuous
measurement by a sequence of discrete wave function
collapses as was proposed in seminal works [1]. Such
approach leads to the explicit quantum Zeno paradox,
not effect. Instead, a dynamical description of such
measurements was elaborated in [7,12]. In this ap-
proach the object system (atom), the radiation field
(or emitted particle), and the device (detector of par-
ticles) are considered as subsystems of one compound
quantum system. The analysis of Schrodinger equa-
tion of this compound system yields the expression for
the decay constant perturbed by a given interaction W
of emitted particles with detector [7,12]:

F=2n/de(w)A(a)—50). (1)

In Eq. (1) M(w) is the sum of all transition matrix
element squares related to the same energy of emit-
ted particle w (interaction formfactor), & is the ex-
pectation value of final energy of emitted particle. The
function A(w — &y) describes the influence of obser-
vation on the decay constant. Without detectors the
function A(w — &) transforms to the Dirac’s delta-
function 8(w — &) and Eq. (1) transforms to the
Golden rule [7,12].

The dynamics of observation of decay by a distant
detector is similar to the dynamics of spontaneous de-
cay onto an unstable final state. Particularly, in the
last case the decay constant perturbed by instability
of final state is given by the same Eq. (1) as in the
previous one [12]. The physical meaning of function
A(w — &) in the case of decay onto an unstable level
is simple: this is an energy spreading of the final state
of decay due to its instability [12]. Also, perturbation
of decay constant takes place in this case in general.
This effect is analogous to QZE. By analogy, it was
supposed [7] that the meaning of A(w — &) in the
case of observation of decay by a distant detector is
an energy spreading of the final states of decay due to
time-energy uncertainty relation and finite time-life of
emitted particle until scattering on the detector. There-
fore one can suggest that the observation influences
decay in accordance with the following sequence: The
shorter emitted particle time-life before scattering on
the detector, the wider A(w — &), the stronger pertur-
bation of decay constant. This argument qualitatively
leads to the existence of QZE during observation of
decay by a distant detector. The opposite point of view
is represented in [13]. It was argued in this paper that
the observation of decay by distant detector is not a
quantum measurement at all and there is no QZE.

It is clear that a strong interaction W between the
emitted particle and the detector is needed to obtain
QZE. Hence, W is essentially nonperturbative in this
problem. This feature determines the main difficulty
of calculations of function A(w — &) in Eq. (1) and,
consequently, the perturbed value of decay constant.
Particularly, in [7] we supposed that QZE may explain
strong inhibition of the 76 eV nuclear uranium-235
isomer decay in the matrix of silver [14]. However, we
had to restrict the consideration only by a qualitative
analysis of Eq. (1) for this case due to difficulties of
calculations of function A(w — &p).

Since it is difficult to study a realistic physical
system, it is reasonable to start with some simplified
models to calculate the function A. The aim of the
present Letter is numerical investigation of Eq. (1)
for a simple but not oversimplified model system. We
obtain some general formalisms firstly; then introduce
one-dimensional three-particle model of continuous
observation of decay; then describe the numerical
computation scheme for this model, and finally discuss
the results of calculations.
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2. General considerations

Leta compoundsystem S = X ® Y ® Z consists | of
three subsystems X, Y, and Z. The system X (“atom”)
decays spontaneously from the initial exited state | X, )
to the ground state | X,) emitting a particle ¥ (“elec-
tron”) due to the interaction V between systems X
and Y. The particle Y is initially at the ground state
|Yo) (electron is on the bounded state in atom) and then
transits to the continuum |Y(n, Ey)). Here Ey is the
energy of the state in the continuum and 5 represents
all other quantum numbers. Particle Y scatters inelas-
tically on the system Z (“distant detector”) due to the
interaction W between Y and Z. As a result, the sys-
tem Z transits from the initial ground state | Zg) to the
continuum |Z (¢, Ez)). This transition is considered to
be a registration of decay. We consider that the inter-
action V does not effect system Z, the interaction W
does not effect system X and the systems ¥ and Z do
not interact in their ground states. Therefore, we have

V=Vxy®Iz, W=1Ix®Wyg,
Wyz|YoZo) =0, 2)

where Ix and Iz are the unit operators in the Hilbert
spaces of corresponding systems. The Hamiltonian of
compound system is

H=Hy+V+W, ©)
where
Hy=Hy®Iyz + H{ ® Ixz + H2 ® Iyx
with obvious notations.

The initial state of system S at the initial moment of
time 7 =01is
[Po) = [Xe) ® |Y0) ® | Zo) = [ X Yo Zo).

Let us introduce the first-order correction to the
eigenenergy of state |¥) due to interaction V:

Vo = (W V I¥0),

and renormalized unperturbed Hamiltonian Hy and
renormalized interaction V':

H{ = Hy + 8 Vol %) (¥,
V=V - 8Vo|¥o) (%l

! § = X ® Y ® Z means that the Hilbert space of system S is a
direct product of the spaces of systems X, Y, Z.

Then Hamiltonian (3) may be rewritten as
H=Hy+V' +W.

The initial state |¥p) is an eigenstate of the Hamil-
tonian Hjy with the eigenenergy

Ey=E% +E)+ EY +5Vp.

The interaction V is considered to be a small
perturbation, but the interaction W is not small. To
obtain the decay constant of the exited state |X,) it
is necessary to solve the Schrédinger equation for the
compound system S. It is impossible to construct the
perturbation theory for W, but it is possible for V.
Therefore, let us introduce the interaction picture as
(h=1)

(D) =T (D), |9 0)=1%),
V[’(T) —_ ei(H6+W)T V/e_i(H6+W)T. (4)
Then the Schrodinger equation reads as
T
W1 (T)) = 1%0) —i / Vio|er@))dt. ®)
0

The solution of Eq. (5) in the second order of pertur-
bation theory with respect to V is

T

I‘PI(T))=|%)—i/V/(t)l‘I’o)dt
0

T 1
- / d / A ViV, (6)
0 0

Let F(T) be the nondecay amplitude
F(T) = 7 (wo|w (T)).
It follows from Egs. (4) and (6) that

T h

Py =1- [an [ an@ivieovieiw.
0 0

For the initial region of exponential decay curve (time

is not very small, not large) we assume

F(T)=exp(—yT)=1—yT, y =const. (8)

Then the quantity I" = 2Rey is the probability of
decty per unit of time (decay constant). Using Egs. (7)
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and (8), we obtain

o0
I'=2Re / (Wo| V' e ity \gyei&ot gr. (9)
0

By v(n, Ey) denote the matrix elements of V which
cause the decay of state |X,) and emitting of parti-
cleY:

v(n, Ey) = (XY (n, Ey)|Vyy| X Yo). (10)

All other matrix elements do not effect the decay
constant. Let us introduce the vector

|Y>=/d'ldEY |Y (1, En))v(n, Ey). (11)

Then, after simple algebraic transformations, Eq. (9)
may be rewritten as

o0
r=2x / M(Ey)A(Ey — ES®) dEy, (12)
—o0

where
fin _ 0
EY - EY +C()0 +8V0a

M(Ey) = f dn|v(n, Ev)[,

wo=E% — E%,

o0

A(E) = lRefD(t)e—"Ef dr, (13)
d 0

(F Zole™ iz Wrot ¥ 7)

(PZole Mz |TZo)

D(r) = (14)

H)Y;=H})®I; +HIQIy.

It is easily shown that f A(E)dE = 1. Eq. (12) is the
final formula for the decay constant perturbed by the
continuous observation with a distant detector.

3. Numerical model

We consider a one-dimensional three-particle model
(Fig. 1) in this section and hereafter in the present Let-
ter. This model is connected with experiments [14] that
point out to the possibility of strong inhibition of de-
cay of uranium-235 nuclear isomer in silver. The only
possible channel of decay of this isomer is the inner

m, X, "Atom"
X> 11
| :
o> Lo l N IV(E,)> IZ(E )>
g
ay / /

m
.__."_7!.4_ Y>> L---2 K"' |Zo> Xy z

0
a 2a,

] ' "Device”
Y, "Atomic electron” 2, "Device

Fig. 1. The one-dimensional three-particle model of spontaneous
decay with continuous observation of decay particle by a distant
detector.

conversion of nuclear transition on the atomic shell.
This is a radiation-less transition with emitting one
of the atomic electrons. Our model represents very
schematically a nuclear decay in an atomic medium
by the channel of inner nuclear conversion. Here the
medium plays the role of detector of conversion elec-
trons. The medium (or detector) is represented by the
only “atom” in the model. A state of a single atom may
play arole of device if we are interested in a back influ-
ence of the measurement to the dynamics of measured
system. Particularly, this proposition is supported by
the experiments on interference of atomic beams [15].
The interference fringes are destroyed when the infor-
mation about the path of atom is recorded in a single
atom state.

The systems X, Y, Z are one-dimensional rectan-
gular potential wells. There is a single particle in each
well in the initial state of system X ® Y ® Z. The
masses of particles and the geometry of potential wells
are clear from Fig. 1. We use the units such that
my =1, ay =1, A = 1. The coordinates of particles
X, Y, Z are denoted by x, y, z, respectively. There is
an infinitely high potential wall for all particles at the
point x = y = z =0, consequently all particle eigen-
states are nondegenerated. We consider that each par-
ticle X, Y, Z governs only by its own potential well
Ux(x), Uy (y), Uz(z), respectively, and by interparti-
cle interactions.

The potential well Ux(x) is a potential box with
solid walls. The potential wells Uy (y) and Uz(z) are
such that they contain only one bounded state for
particles Y and Z, respectively. The particles X and Y
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interact by repulsive §-like potential

vg > 0. (15)

This interaction causes the transition of particle X
from the initial state | X.) to the ground state |X,) and
simultaneously the excitation of particle ¥ from the
bounded state |Yp) to the continuum |Y,(Ey)). Since
all states are nondegenerated, the degeneration index 7
may be omitted. The threshold energy for particle ¥ to
be ionized is E g‘r = 0. The particles ¥ and Z interact
by Gaussian repulsive potential

2
Wrz(z—y)=wo exP[— & Z,y)

20y

The Hamiltonian of compound system X ® Y ® Z is

Vxy(y —x) =vpd(y — x),

:l, wo > 0. (16)

1 92
H= 5+t Ux(x)[®Iyz
2 x 0X

18
+ |- Y 5 TUr() [ ®Ixz

2m, 922
+Vxy(—x)®Iz+ Wyz(z—y)® Iyx.

The general expressions for v(n, Ey), 117 Y, and I'
(Egs. (10), (11), and (12), respectively) now become

1 82
+ |- +Uz(2) | ® Ixy

v(Ey) = (X, Y (Ey)|Vxr|X.Yo), (17
|17)=f|Y(EY))u(Ey)dEy, (18)
r=2n/|u(Ey)|2A(Ey—E§“)dEy. (19)

The expressions for A(E) and D(#) (Egs. (13) and
(14), respectively) remain unchanged.

To calculate I” we should calculate D(¢). To calcu-
late D(t) we should calculate two functions

() = (V Zo|e Wizt Wy | § 7o), (20)
g0(t) = (P Zo|e™ H72!| 7 Zo), @1)

and then find D(t) = q(t)/qo{t). We calculate g ()
numerically in this Letter.

To obtain g(¢) the Schrédinger equation may be
solved:

; AW (y,z,1)

Y = (Hyz + Wyz)¥(y,z2,1), (22)
¥ (y.2,0) =¥ () Zo(2), 23)

and then the inner product g(t) = (YZollf/(y,z, 1))
may be obtained. It follows from Egs. (15), (17),
and (18) that Y (y) may be represented through func-
tions X,, X,, and Y as

Y= NYo(y>[X; () Xe(y)

- f Y0 |* X206 X () dy’} (24)

where N is a normalization factor. Since the functions
X.(x), Xg(x), Yo(y), and Zop(z) are the well known
eigenfunctions of one-dimensional rectangular well, it
is easy to calculate the initial state (23) analytically.
Note that it follows from Eq. (24) that Y (y) is a
compact wave packet near the origin of axis y. The
physical meaning of this wave packet is the state of
particle Y that arises virtually just after the particle
excitation [7].

Eq. (22) was solved numerically. The state of
the system ¥ ® Z was represented by a grid wave
function with zero margin conditions defined on two-
dimensional equidistant rectangular grid with the same
steps along y- and z-axis. Both dimensions Ly and
Lz of calculation area were much greater than the
distance zo from the center of device Z to the origin
of coordinate system. The scheme of calculation was
as follows. Let the grid wave function at the time ¢ be
{@ (1)}, where k =0,..., Ny, [ =0,...,Nz. Then
the wave function at the time ¢ + At is calculated
through successive four steps:

(a) The calculatiorl of sin-Fourier transform of the
grid function {¥;(#)}:

Ny—-1Nz-1

Fon (8) = == Z > )

k=1 I=1

sin mnk i mtl
X —k }sin| —1].
' Ny Nz

(b) The calculation of free evolution of Fourier coef-
ficients:

(t + Af) = Fy (t ! m”>2
mn + )— mn()exp —i 2m (L_Y

4 ("”)2]Ar
‘g 2mz \ Lz '
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{c) The calculation of back sin-Fourier transform that
produces the free evolution of system Y ® Z
without potentials Uy, Uz, and Wyz during time
interval At:

Ny—1Nz—-1

Gt +AD =" Y Fun(t + Ar)

k=1 I=1

. mm . nmw
x sin| —k }sin] —1 }.
; Ny Nz

(d) The calculation of contribution of all interactions
to the evolution during time interval A¢:

Wy (t + Ar) = W exp{—i [Uy () + Uz (z1)
+ W(z — y))At}.

The zero margin conditions is fulfilled because of
representation of {¥;} by the sin-Fourier series.

The calculation of function go(z) (Eq. (21)) is
not difficult. This calculation may be carried out
analytically or numerically by the same way as the
calculation of function g(z), but for Wyz = 0. To
verify our calculation schemes both ways were tested
(the results were identical).

4. Results of calculations and discussion

We present the results of calculations for the follow-
ing set of parameters: ay = 0.6, my = 1.0, ay = 1.0,
Uy = —5.552, E = —2.776, 29 = 4.0, 2az = 1.0,
mz =09, U = —2.210, ES = 1.0, ow = 0.2,
wo = 20000. Here U? and U g are the depths of
wells Uy and Uz. The interaction W is short-range:
ow <K zo; consequently, condition (2) is fulfilled.
Also, W is strong enough for the particle ¥ could not
be tunnelled through the particle Z and the energy of
transition wy is high enough to ionize Z.

The results of calculation are as follows. The
function g (¢) is almost the same as function gy(z). The
resulting function D(z) is shown in Fig. 2 by the solid
line. It is seen that D(¢) does not show a drop-down
behavior, but rather shows some oscillations at long
times. It is impossible to calculate the function A(E)
numerically in this situation because integral (13)
diverges, but it is clear that A(E) will be §-like
function. Thus, it follows from Eq. (19) that I' is
almost equal I and Zeno effect is absent.

1‘4 1 1 't i 1

\
ol A
o VIVT

06 .

0,4 A

0,2

0,0 . . r T .
0,0 0,2 04 06 038 1,0
t

Fig. 2. The results of calculations. Solid line — |D(r)|; dashed
line — Pgyr(t).

We mentioned that it was reasonably to consider
the function A(Ey — E)f}") in Eq. (12) as an energy
spreading of the final state of decay due to a finite
time life of particle Y until inelastic scattering on
detector Z. Then the function D(¢) is the effective
“decay curve” of the final state of decay in the analogy
with the decay onto an unstable level [12]. But it
is clearly seen from our results that it is not the
case for the considered numerical model. The survival
probability of the state |Zp) after the decay of the
system X was occur, may be written as

Pouc(t) =Tr [|Zo)(Zolpz (1)]

=[a

where lf/(y, Z, t) is the solution of Eq. (20) and pz(¢)
is the reduced density matrix of the system Z. The
curve Py, (t) is shown in Fig. 2 by the dashed line.
It is seen that the survival probability decreases with
time (as could be expected) and that Py (¢) is quite
different from the function D(z).

Thus, our conclusions are as follows. Firstly, the
functions A(E) and D(z) in Egs. (12) and (13) have
no any simple physical sense in the context of the
problem of continuous observation of decay by a
distant detector. Generally, the function D(r) does
not mean “nondecay amplitude” of the final state of
decay, and the function A(E) does not mean the
energy spreading of decay final states. Secondly, there
is no quantum Zeno effect during the continuous
observation of spontaneous decay by a distant detector

2
/dz F(y,2,1)Z(2)| ,
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if interaction between emitted particle and detector is
short-range and the emitted particle has nonzero mass.
These results are not trivial, because the qualitative
consideration based on similarity between decay onto
an unstable level and observation of decay by distant
detector (see Section 1) points out to the possibility of
QZE in the last case. Finally, we did not consider the
case of “spreaded” detector, when the wave function
of detector intersects with the wave function of decay
system at the initial state, and we did not consider the
case of massless emitted particles. The existence of
Zeno effect in these situations is meanwhile an open
question.
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