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Abstract

Shrodinger equation for two-step spontaneous cascade transition in a three-level quantum
system is solved by means of Markovian approximation for non-Markovian integro-differential
evolution equations for amplitudes of states. It is shown that both decay constant and radiation
shift of initial level are affected by instability of intermediate level of the cascade. These phe-
nomena are interpreted as the different manifestations of quantum Zeno-like effect. The spectra
of particles emitted during the cascade transition are calculated in the general case and, in par-
ticular, for an unusual situation when the initial state is lower than the intermediate one. It is
shown that the spectra of particles do not have a peak-like shape in the latter case. (© 2000
Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

The term “quantum Zeno paradox” had been introduced in Refs. [1,2]. It was argued
there that an unstable particle which was continuously observed in order to see whether
it decays would never be found to decay (for review see Ref. [3]). In the present paper
we restrict our consideration to the special case of continuous waiting-mode (or nega-
tive result) observations of spontaneous decay. An example of such measurements is a
registration, by a permanently presented detector, of particles emitted during quantum
state decay. Until the detector is “discharged”, we continuously obtain information that
the system is in the initial excited state. Another interesting example of waiting-mode
observation of spontaneous decay one can find in Ref. [4]. It was shown [5] that in
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the general case decay may be “frozen” by continuous waiting-mode observation only
at the limit of infinitely fast reaction of measuring device on event of decay (infinitely
short decoherence time). However, in case of realistic decoherence time the decay may
be perturbed in various directions: it may be either slowed down or fastened. The sign
of the effect depends on details of transition matrix elements behavior and on transition
energy. This is a quantum Zeno effect, not a paradox. Thus, in our definition, the quan-
tum Zeno effect is any influence of continuous measurement to probability of decay. At
the limit of infinitely fast measuring device quantum Zeno effect means “freezing” of
decay. Qualitatively, the complicated behavior of quantum Zeno effect may be related
to a complicated behavior of initia] part of decay curve. We will discuss this relation
in more details elsewhere.

it is a difficult problem to determine how a permanently presented detector affects
on the probability of decay in realistic situations [5]. But the kinematics of this pro-
cess are very similar to those of a group of phenomena which was called quantum
Zeno-like effects [6]. All these phenomena (including above-mentioned observation)
are described by the same general equation for perturbation of decay probability [6].
Also, these phenomena has a common main feature: The final state of decay could
not be considered as stable, but further transition to other orthogonal states occur. Just
these transitions perturb the decay constant. The consideration of some of Zeno-like
effects turns out to be much simpler than the genuine Zeno effect. So, it is reasonable
to begin with more simple problems. ‘

Systems that show Zeno-like effects differ from each other by the reason of transition
from final state of decay. The system with forced resonance transition from the final
state of decay was studied in Refs. [7-9]. The analogous system was considered as a
particular case of a general Zeno-like system in Ref. [6]. Mensky [10] was the first who
proposed to consider a spontaneously decaying system with a spontaneously decaying
final state as the system demonstrating quantum Zeno or Zeno-like effect. A simple
example of such a system is the system with two-step spontaneous cascade transition.
Such systems are the subject of the present paper.

Let X be a three-level system (for example, atom or atomic nucleus) with states X0},
lx1), |x2) and eigenenergies g, Wy, w?, respectively (it is assumed # = 1 hereafter).
Suppose that system X was prepared in state |xo) at the initial moment of time ¢t = 0.
State |xo) is unstable and decays spontaneously to state lx;) due to interaction with
another system (“field”). The latter system has a continuous spectrum of states. Let
state |x;) be also unstable. System X further decays from state |x1) to final stable
state |x;). We suppose for simplicity that direct transition from state |xo) to |x2) is
forbidden. Such a system exhibits cascade spontaneous transition from state |xo) to
state |xz) through intermediate state |x1). This phenomenon was studied in some detail
many years ago [11-13] and was discussed in classical monographs [14,15]. A new
property of cascade transition that was pointed out in Ref. [10] was that the instability
of level |x;) should affect the life-time of level |xo).

It was noted in Ref. [10] that during cascade transition the second fast transi-
tion |x;) — |x2) after decay of initial state |xo) to |x;) was similar to waiting-mode
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observation of first decay [xo) — |x;). The main difference of the second transition
from a genuine continuous measurement is that it is not possible to switch off the in-
teraction causing the second transition, but it is possible to stop a measurement. Hence,
the perturbation of decay rate of transition |x) — [x1) by instability of state |x) may
be attributed to quantum Zeno-like effect. We use the term quantum Zeno effect as
synonym for quantum Zeno-like effect throughout the present paper.

The formula for decay rate of state |xo) perturbed by instability of state |x;) was
derived in Ref. [6]. With notations analogous to those in our paper, this formula reads
as

f0:2n/oooda)"f(w)l 4 (1)

T A7+ (0 — wor + )2
Here wo1=wy—w{; ¥ (o) is the sum of all square modula of transition matrix elements
related to the same energy o of emitted particle; 1, is the real part of decay constant of
level |x;); p; is the contribution to radiation shift of level [x1) from discrete level |x,)
[16]. We shall hereafter mention similar energy shifts as radiation shifts simply. The
complex decay constant y; of level |x|) is y; = 4; + iy if the system was prepared in
state [x). At the limit of 2; — 0 Eq. (1) transforms into conventional Fermi’s Golden
rule

IT'o =2nv"(wo1 — 1) (2)

but wherein transition energy is corrected by radiation shift of level |x;). However,
deviation of perturbed probability Iy from unperturbed value I'y exists, if A; # 0. Just
this phenomenon is considered as quantum Zeno effect in Ref. [10]. Tt is easily seen
from Eq. (1) that Zeno effect is strong if 1, is comparable with wq, by its value. If
formally 4, — oo we obtain I’y = 0. This is pure “quantum Zeno paradox”.

It is possible to make an interesting conclusion from Eq. (1). Suppose wp; —u; < 0.
Then Golden rule Eq. (2) predicts zero probability of decay of level |xp) since ¥~ (w) =
0 for @ < 0. There are no field quanta with negative energy. However, Eq. (1) shows
that perturbed value of probability of decay Iy is greater than zero in this situation
generally. This phenomenon is a special case of quantum Zeno effect. Hence, the
transition from lower (|xo)) to upper (|x;)) level is possible, and positive energy quanta
should be emitted in such a process. So, an important question arises: What are the
spectra of quanta emitted during transitions |x) — |x;) and |x1) — |x2) in this unusual
situation? Also, what are these spectra in the general case when transition energy wy
is comparable with decay constant 4, of level bx1)? Obviously, these spectra cannot be
Lorentzian-shape peaks.

Eq. (1) was derived on the base of the second-order perturbation theory in
Ref. [6]. The spectra of emitted particles cannot be calculated by this method. So,
the present paper includes two aims. Firstly, we derive no-decay amplitude of initial
state [xo) and probability Iy by nonperturbative method which is based on direct tran-
sition from non-Markovian evolution equations to Markovian approximation. Secondly,
we obtain all spectra of interest from our nonperturbative solution of Shrédinger equa-
tion: mutual energy distribution of particles emitted in the first and second transitions,
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spectra of particles emitted in the first and second transitions separately, and distribu-
tion of the sum of energy of first and second emitted particles. Some of these spectra
was determined early [15], but those results are not related to the conditions wg; ~ 4
or wg; < 0.

This paper is organized as follows. In Section 2 we discuss the Markovian approx-
imation for a spontancous exponential decay in two-level system. In Section 3 we
use the formalism developed in Section 2 for description of cascade transition in a
three-level system and obtain our main results: perturbed values of decay constant and
radiation shift of level |xo) and spectra of particles. Finally, some features of these
results are discussed in Section 4 and conclusions are drawn.

2. Markovian approximation in two-level problem

We consider a model of spontaneous transition of a general type. Let X be a
two-level system ([xo), [x1)). System X interacts with another system F (field). System
F has a ground state |fo) and continuous spectrum of exited states |y,), where # is
the index of state in the continuous spectrum. Since we discuss in Section 3 a field
with quanta of two different kinds, we use the notation |y) for field quanta instead of
|f). The continuous spectrum states are normalized by condition {(yy|yy) =0 —1').
Let the initial state of the combined system X ® F at time =0 be

|P(0)) = |x0) & | fo) = |xofo) -
The Hamiltonian of system is
H=Hy+V,

where Hp is a “free” Hamiltonian
Ho = o ol + b + [ o}y
and V is an interaction between X and F:
= [ 108} ) sl + " (o) a1 ©

In Eq. (3) b,,+ is the creation operator for state |y,). It does not matter what is the
commutation relation for operators b,: either [bn,bn*,]#:é(n—n’ ) or [by, b, L=0(n—1").
It is easy to see that v(n) is a matrix element of transition: v(17) = (x1 4|V |¥0.f0)-

To solve the Shrodinger equation

| (1)) = —i(Ho + V)|¥P(2)) 4)

we use the ansatz

(1)) = |xo fo)ao(t)e ™V + / dip oy yy)ary()e T (5)
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Substituting Eq. (5) for |¥(¢)) in Eq. (4) we obtain the system of equations:

do(t) = i / dn o (e o, (1) | ©)

dry(t) = —iv(n)e' @ 2 gy(z) (7)

Eq. (7) can be solved for coeflicients ay,. Substituting the solution for a;, in Eq. (6)
we get the equation for coefficient ay(t):

ao(t) = —/0 ao(t))go(t — 1) dey , (8)
where
qo(z) = / |o(n)| e @@ dy Q)

The amplitude ay(¢) is a solution of non-Markovian equation (8): the derivative of dg
at the moment of time ¢ is expressed through all values of ay for all moments of time
from 0 to ¢.

Sudbery [17,18] proposed qualitative arguments that the function go(z) in Eq. (8)
was a very narrow peak around value 7 = 0 for usual decay systems. Besides, it
is possible to understand why it should be the case if we consider the behavior of
function v(n).

The index # of state |y,) can be represented as the eigenenergy of the state w” and
the degeneration index o”: # = {@”,«”}. Then Eq. (9) can be rewritten as

go(7) = " / V(0 )e” " de” , (10)
0
where
"//(cuy):/|v(wy,ocy)|2docy. (1)

The integral in Eq. (11) means a sum for discrete indexes. Eq. (10) shows that the
function go(7) is a Fourier transform of function ¥"(w”) up to factor exp(iwe; ) which
is equal to one by module. The function ¥"(w”) is very wide for usual decay systems.
For example, in the case of electromagnetic 2P-1S transition of hydrogen atom, the
value A of natural cut-off of function ¥ (w”) is A = %ame ~ 5.6 x 10° eV, where a
is the fine structure constant and m, is the electron mass [19-21]. The value of A is
much greater than the energy of 2P-1S transition. The Fourier transform of wide real
non-negative function ¥"(w”) is a narrow peak near t = 0. Consequently, the function
qo(7) is a narrow peak near 7 =0 too. The width of this peak is about tzc, = 1/4.
Suppose ag(t) to vary slowly during time intervals of the order of 1/wg for times
t > 1/wo;. Then, for the same times, ag(?) is approximately constant during the time
interval of order tze, and the function ag(¢ — ¢;) may be moved out from the integral
in Eq. (8) at time 7. Making also the variable change t=1¢ —#; we rewrite Eq. (8) as

() = —ag(t) /0 go(7)de (12)
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Therefore, we obtain an approximate Markovian equation (12) for ao(¢) instead of
non-Markovian equation (8). Recall that Eq. (12) is valid only for £ > 1/wg;. It is not
difficult to calculate the integral in r.h.s. of Eq. (12) using Eq. (10):

/’ (1) dr = /°° V() sin(w” — wo )t —il — cos(w? — wo )t o’
0 7 0 w¥ — wy) WY — Wy '

(13)

Suppose ¥"(w”) is sufficiently smooth. Then it is seen that the integral in the r.h.s.
of Eq. (13) does not depend on time for ¢ > 1/wq;. Hence, we can change the upper
limit of integral from ¢ to infinity and find that

/'%mhzm:%+w,
0

where

Ao =Reyy =¥ (wo),

[oe) ,V 54
RACORS
0 W — o

Ho=Tmyo = —P (14)
Here P denotes the principal value of an integral.

Eq. (12) reads now as dg(t) = —yoao(t) and has the solution ag(t) = exp(—yot).
This is the usual exponential decay law. The real part of y, determines the probability
of decay per unit of time I'g = 2Reyo = 2n# (wp)); the imaginary part of 7y, is the
radiation shift of level |xp).

3. Decay constants, radiation shifts, and spectra in two-step cascade transition

We consider three-level system X with cascade transition |xg) — |x;) — [x;) in
this section. The transitions result from interaction of system X with another system
F (field). Suppose that two different types of quanta are emitted during the first and
second transition. The quanta |y,) are created during transition |xp) — |x;) and the
quanta |z;) are created during transition [x;) — |x;). The y and z quanta have creation
operators b,‘,L and cg, respectively. We admit that for all # and  the operators b, and
¢y satisfy the relation

[by.ci1- =0, [byc]_=0. (15)

Eq. (15) represents the meaning of difference between particles y and z. Operators
by may be either Bozonic or Fermionic type, the same is true for operators c;. The
statistics type of y and z particles may be different from each other. For example, we
may consider cascade nuclear transition when an atomic electron is emitted in the first
transition (the inner nuclear conversion phenomenon) and electromagnetic quantum is
emitted in the second one. Our model is correct for this case. We also can consider
a cascade electromagnetic transition, but the energy of the first transition is much less
than the energy of the second one. In this case Eq. (15) is not strictly true for all quanta

‘( .
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of such cascade transition, but our model may be accounted as a good approximation
in this case as well. The generalization to the case when we cannot distinguish between
quanta emitted in the first transition and in the second transition is not straightforward
and is not discussed here. '

The Hamiltonian of the system X ® F is

H=Hy+V+W,

where
2
HO:Z w)gf\x5><x5|—l—/dna)f;b,;“b,ﬁ—/deZc?q, (16)
£=0
v = [ dntetnbi o) ol + Okl 1 1), (17)
W= / ALw(O)ct o) o] + w* (gl (el (18)

The notations in Eqs. (16)—(18) are similar to those of Section 2 and obvious. For
initial state |¥(0)) = |xofo) we solve the Shrédinger equation

(1)) = —i(Ho + V + W)|¥(1)) (19)

using the ansatz

|®(£)) = |xo fo)ao(t)e 0" + / dr |y yp)ary(t)e @)

+ / dn / AL ey yoze Yz (£)e @O Tl (20)

Substituting Eq. (20) for |¥(¢)) in Eq. (19) we obtain the system of equations
do(t) = —1 / dy o (e M ay (1), | @n
() = —iv(n)e =V ag(t) i / dLwH (e ay, (1), (22)
dogg(1) = —iw(O)e ™ ayy (1) (23)

Here w;; = wf — o®. From Eq. (23) we have
L] i J

t
ay(t) = —iW(C)/ dey 50y, (n) . (24)
0

Substituting Eq. (24) for ay,(¢) in Eq. (22), we obtain a non-Markovian equation for
coefficients ay,:

t
iy (1) = —io()e @ = a1 — / dtr any (1)t — 1) (25)
0
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where

ql(T) — eiwlzr / ,W(wZ)e—iwlr dew? , (26)

W(w?) = / |w(w?, a7)|* do? (27)

and we supposed {={w?,o*}. The equations (26) and (27) are quite similar to equations
(10) and (11) (Section 2). The only difference is that Egs. (10) and (11) are related
to transition |xo) — |x1) but Egs. (26) and (27) are related to transition [x1) — |x2).
The integral in r.h.s. of Eq. (25) is similar to the integral in r.h.s. of Eq. (8). There-
fore, arguing as in Section 2, we see that Eq. (25) may be changed by approximate
Markovian equation

() = —iv(n)e @1 ag(t) — yany (1) , (28)

where

v =4 +im :/ qi(r)dz,
0

© W (w?
M =1 (012), Uy = —P/O aﬂi—wl)z dw?.
The solution of Eq. (28) is
ary(1) = —iv(n) /0 emmig el ay(y) . Ik g (29)
Substituting Eq. (29) for ay,(¢) in Eq. (21) we find the equation for amplitude ao(2):
ao(ty=— /0‘ ao(t1)go(t — t1)de (30)
where
Go(1) = e N7l / ¥ (0)e " do” . (31)

The tilde indication of function §,(t) means that this function is related to transition
lxo) — |x1) perturbed by instability of state |x;). Further the meaning of tilde will be
the same in all cases. Function go(7) differs from nondisturbed function go(t) Eq. (10)
by additional factor exp(—7;7). The module of this factor is a decreasing function since
Rey; =4, > 0. Consequently, the function §(t) is a narrow peak near the value 1=0
as well as the nondisturbed function go(t) (see Section 2). Hence, we can change the
non-Markovian equation (30) to Markovian one

do(t) = —oao(t) , (32)

where

%:ZOHﬁO:/ Go(t)dr. (33)
0
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It is not difficult to obtain from Eq. (33) and Eq. (31):

5 o 1 A
=T V()= dw” 34
0 /0 ( )n/lf—l—(coy—wmﬁ%u])z (34)
. * @’ — wor + 1
= V(¥ dw” . 35
Ho /o ( )}~%+(wy—a201 + p1)? (33)
Solving Eq. (32), we get
ag(t) =~ (36)

It follows from Eq. (36) that 3, is the complex decay constant of state |xp). Decay
constant is perturbed by instability of state |x;). Thus, the probability of decay per unit
of time is I'y = 2Re Yo = 2. This value coincides with the result obtained early in
Ref. [6] by perturbation method (comp. Egs. (1) and (34)).

Now let us find the spectra of particles y and z created during the first and second
transitions of system X. These spectra are defined by values |a1,,(t)|2 and Iaz,,g_;(t)|2 as
t — oo. Substituting Eq. (36) for ap(¢) in Eq. (29), we obtain

li(w] —w0) =Tt _ g—nit

an(t) = —iv(n)s. (37)

() —wo1)+71—F

It is readily seen that
lim |a, (1) =0.
t—00

This means that coefficients a;,(¢) do not contribute to spectra of particles. This could
be expected because these coefficients relate to intermediate state of the system.
Substituting Eq. (37) for ai,(¢) in Eq. (24), we get the expression for az,¢(¢):

v(mw(©)

_i(wif —wo1) + 71— ¥

ay(t) =

el +0i—wa)=Rl _ 4 eli@i—wn)—nlt _
X { — — — = : (38)
wp +of —we)—F  (wf—w)—n
It is easy to obtain from Eq. (38) that the limit of ay,;(f) as t — oo is
v(mw(l)
agyr(00) = (39)

li(wy + @f — w02) = Folli(@} — wi2) =111

Now we can calculate mutual distribution of energy of particles y and z:

p((uy,coz):/day/docz 22000070 (00)]* . (40)
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From Eq. (39) and Eq. (40) we get

V()W (07)
) ’
Ao + (0 + @* — &g2)2][4] + (007 — d12)?]
where @g; and @1, are the corrected values of transition energies

p(w’, 0*) =

(41)

Doy = (0§ + flg) — @3, @ = (0] + ) — ;.
Let us note that the energy f is corrected by perturbed value of radiation shift i,

defined by Eq. (35) instead of unperturbed radiation shift Eq. (14).
The spectrum of particles y created in the first transition is defined by

+oo +00
p(w¥)= /0 (o, w?)do® = / p(w?, 0*)dw” . (42)

We change the lower limit of integral in Eq. (42) from 0 to —oo since #"(w*)=0 for all
w? < 0. 1t is possible to calculate the integral Eq. (42) analytically only if the function
W (w?) is known. In the general case we have to introduce some approximation.
Suppose that |wg1| < w12, @ <€ w2, and #'(w?) is a sufficiently smooth function:

W(w + doy) = W (D12) = W(w). (43)

Then we can rewrite Eq. (42) as

+o0 dw?

) =@ [ —
—oo [2g + (@ + 07 — @02)?][4] + (07 — @12)?]

(44)
It is not hard to calculate the integral in Eq. (44) by residue theory. We obtain
¥ () | 1 G0+ A
plony="@ 1 fFh ) (45)
Ao T (Ao + 41)? + (@¥ — doy)

where @g; = (wf + ) — (] + w1) is the corrected energy of transition |xo) — |x1).
The spectrum of particles z is

+ 00
mwﬁa/ P, 07) do
0

W (w? o0 ¥ (w”)dw”

= 5 = ~2 :
2+ (0F —012)? ) Ay + (0¥ + @F — @p2)?

(46)

Suppose ¥ (w”) to vary slowly during intervals of order Jo for all w”. Then we can
move ¥ (w”) out of integral in Eq. (46) for ¥ = g, — w*. Taking into account also
Eq. (43) we have
p7) = Y (D — ©F) [l Al }
‘ 70 A+ (0F — d2)? |’
Let us find the distribution of the sum of energies w” + w” = Q. It can easily be
checked that

Q
wqm=pru%whw” (48)

(47)
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It follows from Eq. (48) and Eq. (41) with assumption Eq. (43) that

S(Q
(@) = &)

- (49)
AO + (82— (1-)02)2

where
A

Q
1
S(2) :/o 7 (0”) {E B +(Q - — dn)? dor

If 4, > Ao, function S(&) varies slowly in comparison with the pole-like denominator of
Eq. (49). Hence, the spectrum of the sum of particle y and z energies is approximately
a narrow Lorentzian-shape peak of width g (as could be expected).

4. Discussion and conclusions

The main results of the present paper are as follows:

e Eq. (34) describes perturbed value of the real part of decay constant of level |xo) (the
initial level of cascade transition). The real part is also the half of decay probability
per unit of time of level |xo).

e Eq. (35) describes perturbed value of imaginary part of decay constant of level |xo).
The imaginary part is the perturbed value of radiation shift of level |xo).

e Eq. (41) describes mutual energy spectrum of particles of the first and of the second
transition of a cascade.

o Eq. (45) describes energy spectrum of the first transition of a cascade.

e Eq. (47) describes energy spectrum of the second transition of a cascade.

o Eq. (49) describes distribution of the sum of particle energies created during the first
and the second transitions of a cascade.

We discussed Eq. (1) for perturbed value of decay probability Iy in the Introduction.
Since I’y = 270, so this discussion is related to Eq. (34) as well.

Eq. (35) shows that instability of level |x;) affects the discrete level contribution
to radiation shift of level |xp) as well as the probability of decay. Therefore, the
well-known formula for radiation shift (14) should be replaced by Eq. (35) if 4, is
comparable with |wg;|. It is easy to see that Eq. (35) transforms into usual Eq. (14)
as A4 — 0, uy — 0. If formally 4, — oo, from Eq. (35) we obtain g, — 0. This
result is similar to ;lo — 0 as A, — oo, therefore, it may be called “an energy-shift
quantum Zeno paradox”. Similarly, the perturbation of radiation shift of level |xo) by
instability of level |x;) for realistic values 4, may be called “an energy-shift quantum
Zeno effect”. Note that it could be expected that “energy-shift quantum Zeno effect”
would be presented in waiting-mode observation of decay in the general case, not only
in cascade transitions. Thus, the same mechanism that perturbs the probability of decay
also perturbs the radiation shift of level.
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Let us now discuss the expression for particle spectra emitted during the first tran-
sition (Eq. (45)) and during the second transition (Eq. (47)). It is suitable to discuss
three different situations:

L. If 41 < o1 and @g; > 0 then it could be considered that function ¥ (e’ ) to
vary very slowly in comparison with the pole-like denominators in Eq. (45) and
Eq. (47). Hence, we obtain that the spectra defined by Egs. (45) and (47) are usual
Lorentzian-shape peaks. The width of the spectra of first transition is Ao + 4, but
not Ay. These conclusions are quite similar to well-known results [15], but Ay in
Ref. [15] is now changed by perturbed value Aq.

2. If 2y ~ @1 and @g; > 0, it cannot be considered that function ¥ (w*) to vary
slowly in comparison with the denominators in Egs. (45) and (47). Therefore, both
the spectra of particles y and z become strongly deformed Lorentzian peaks.

3. Finally, suppose @y < 0. Then the maxima of Lorentzian factors of Egs. (45)
and (47) are positioned in the branch of w values where ¥ (w)=0. The spectra shapes
are defined by the shape of function ¥"(w) multiplied by the tale of Lorentzian peaks
now. Therefore, both spectra p,(w”) and p.(w*) are continuous rather than peak-like.
The energy of quanta y emitted during the first step of cascade transition is positive,
of course, in spite of @ < 0.

Thus, the separate spectra of particles y and z may be very wide or even continuous.
But it follows from Eq. (49) that the energies of particles y and z remain strongly
correlated such that the width of the distribution of sum Q = w* + w? is equal to 4 in
all cases. This is a manifestation of fundamental uncertainty principle for energy and
time.
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