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Measurements of the primary proton and helium
spectra and their modulations using a balloon-

borne Cerenkov-scintillation counter*

J. F.ORMES and W.R. WEBBER

School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, U.S.A.

Abstract. During the years 1963-65 the spectra of protons and helium nuclei have been studied on eleven flights at
seven geomagnetic latitudes using a modified version of the Cerenkov-scintillation counter. The flights attained
depths of 2-6 g cm™2 which coupled with the detector's large geometry factor (~50 sterad cm2) enabled details of the
helium intensity, and the different contributions, primary and secondary, to the singly charged distribution, to be
evaluated as a function of atmospheric depth. These results demonstrate that it is necessary to know in detail the
contribution of all non-primary components, particularly at the lower energies, before a spectrum of primary pro-
tons can be determined. The spectra of primary protons and helium nuclei measured on these flights are presented.
These spectra cover the range from about 0. 6-16 GV rigidity. Our results indicate that the lowest energy protons
have increased by more than 50% between 1963 and 1965. The proton spectrum is almost flat down to 0.5 GV in
1965, but the helium spectrum is falling sharply at the corresponding rigidities. A study of the modulation of these
two components during this period reveals that (1) the modulation depends approximately on 1/8 for 0.45 < 8 < 0.85
for both components, and (2) at the same velocity, the modulation for protons is at least twice that for helium nuclei.

During the past two years eleven balloon flights have been
made with a Cerenkov-scintillation telescope by the Univer-
sity of Minnesota group. The detector measures the energy
spectrum of the individual nuclei from Z =1 to Z = 26 over
an energy range from 40-1000 MeV/nucleon. Relevant data
pertaining to these flights are shown in the table.

The four flights at Churchill were made by outside contrac-
tors using very large plastic balloons, the remaining seven
by the Minnesota group itself using 300 K or 600 K cubic ft
balloons to carry the total payload of 50 pounds to altitudes
ranging from 4-6 g cm™2. Our instrument is different from the
ysual Cerenkov-scintillation counter and although it has been
described previously (Ormes and Webber 1965) we would like
briefly to review some of its salient features here. First, the
so-called Cerenkov detector is actually a combination Lucite
Cerenkov counter and plastic scintillation counter with the
integrated light from both processes being viewed by a single

7 in. photomultiplier tube. The degree of separation of the
different charge components and the ability to measure the
low energy particles of different charges is determined essen-
tially by the ratio of scintillator (S) light o Cerenkov (C) light
—the so-called S/C ratio. We have used a ratio of 0. 6 in all
standard flights. Discrimination against multiple events is
carried out by studying the pulse height distributions them-
selves rather than with an active anticoincidence system. We
believe that this approach has many advantages for a telescope
as large as ours where one can apply statistical methods to
the analysis of the data. Furthermore, the material in and
around the telescope is kept to a minimum.

Perhaps the most important feature of the detector is, how-
ever, its large geometry factor of ~50 sterad cm2, This is a
factor of 10-100 times that of comparable detectors flown in
balloons. This large geometry factor is achieved without loss
in resolution by a careful selection of components.

Data pertaining to balloon flights of Cerenkov-scintillation counter

Location Pc Date Alt.(g cm™2) Mt. Wash. Inst.
bi-hourly rate
Churchill 0.2 1 Aug. 1963 4.0 2297
Churchill 0.2 11 Jul. 1965 1.9 2425
Churchill 0.2 28 Jun. 1965 3.2 2445 MS
Churchill 0.2 2 Jul. 1965 4.3 2440 LAS
Ely, Minn. 0.7 23 May 1964 4.1 2418 S
Devils Lake, N. D. 1.0 11 Nov. 1963 6.8 2325 S
Minneapolis, Minn. 1.2 4 Jul, 1963 6.5 2320 S
Fayetteville, Ark. 3.2 26 Mar. 1964 6.5 2378 S
Kerrville, Texas 5.6 29 Mar. 1965 5.5 2450 MS
Tucuman, Argentina 12,1 1 Aug. 1964 5.5 2407 S
Tucuman, Argentina 12,1 9 Aug. 1964 5.0 2410 RS

S = standard detector; MS = modified 3 element detector to measure additionally the low
energy electron spectrum; LAS = large area version of standard detector with geometry
factor = 1000 sterad cm?2; RS = standard detector pointing at 60° to the vertical and ro-

tating in azimuth once every 15 minutes.

* Supported under NASA Research Grant NsG 281-62.
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Fig.1 64 x 64 matrix for the Fayetteville flight. S output on vertical axis, S + C on horizontal. Note
helium in lower right-hand corner and slow proton distribution (atmospheric secondaries) run-
ning diagonally to lower centre of distribution. Numbers give n where each bin has between 2n

and 21+ 1 counts.
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Fig.2 Integral spectrum of primary protons at two levels of modulation.

4000 T T T T T T T
3000 - .
——————————— +
A=100g/cm2 - - - +
2000 |- — P i
®/ ’)—/”'/ ¢ e +
I - )‘-S4q/cm2./ ”,—”’
1450 ¢ 60 -
¢/ -
_ ® o0~ — -
§ 1ooop—-" _~ =" .
v /970140/¢ e
E 800(3 ¢77 Arsagren? - :
I -
o = -
¥ 00} - e .
@ 530130 z
3] + » RELATIVISTIC PARTICLES
e 400 | A=29.5¢/cm
S o (D MINNEAPOLIS Mt WASH. 2320
300 @ ’4' (@ FAYETTEVILLE Mt WASH.=2374 7
7
// (3 KERRVILLE Mt. WASH. =2457
/
200 F 7/ TUCUMAN Mt. WASH. =2402 .
I/rrztls ®
- J
100 1 - 1 1 1 1 il
[ 10 20 30 40 50 60 70

Fig.3 Growth curves of relat
different latitudes.

DEPTH (g/ cm?)

ivistic particles measured on four flights at

© The Insitute of Physics and the Physical Society * Provided by the NASA Astrophysics Data System



.1..3490

19651 CRC. . .

Spectral composition

4000 T T
3000+ B
2000 E
1500 R
1000 b
>
@
g 700 .
H
A 500 e
s
= 400 .
2
e 300 F —o= e
o
['4
a o Mt WASH. 2320
200 -
® Mt WASH. =2420 >_+—<
150 ___— Mt WASH. =2520 (est.) based on ion chamber changes 7
8 regression curves of differentiol proton
100 } intensities v.s. neutron monitor. 4
70} b
1 v 1 A A i — 1 1 Al it . A
02 03 04 05 07 | 15 2 3 4 5 7 10
P(8V)
Fig.4 Differential spectrum of primary protons at two levels of modulation.
T T T T
700 r 4
500 | 4
400 |- .
300 + 1
200 + B
s
“ 150 | .
$
b
s 100} o Mt. WASH. = 2320 4
> o Mi. WASH. = 2420 J(>P).%
3 70 [ -=-— Mt WASH. 2520 (est) bosed on regression * P .
3 curves of integral Helium nuclei intensities
s 50 F v.s. neutron monitor. -
2
d 40 4
T
30 b
*
20 1
15 F b
'o 1 1 1 1 1 1 1 1. A1 1 1 1
02 03 04 5 07 | 15 2 3 4 5 7 10 15 20
P (BV)

Fig.5 Integral spectrum of primary helium nuclei at two levels of modulation.
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Fig.6 Differential spectrum of primary helium nuclei at two levels of modulation.

The flight data are divided into 5-10 minute intervals during
the ascent and appropriate longer intervals while the balloon
is at altitude. This means that the absorption of helium nuclei
can be obtained as a function of altitude. The development of
low energy protons can also be studied as a function of alti-
tude—a most important input for the separation of low-energy
primary and secondary protons at high latitude and high alti-
tude. Although these data are available they will not be pre-
sented here.

During the course of a typical four-hour flight at high latitude,
a total of approximately 20 000 helium nuclei are observed.
Each differential interval for helium nuclei will thus contain
about 1000 counts. Unlike other detectors statistical uncer-
tainties are not the most important source of error in the
proton and helium differential spectra. For this reason great
care has been taken in the standardization of the instrumenta-
tion—both with regard to its physical properties and the analy-
sis of the data.

The two largest sources of uncertainty in the analysis of the
data are (i) the energy (or charge) calibration and (ii) the iden-
tification of 'true' counts as indicated by their being at the
location in the pulse height distribution predicted (e.g. the
removal of 'background' counts). (i) is discussed in an accom-
panying paper (Webber 1965, this Conference, Chap. 4, SPEC
12) on the heavier nuclei, where the energy or charge is a
much more sensitive function of the known calibration of the
instrument. The importance of (ii) depends on the energy and
charge being considered. For energies from 600-1200 MeV/
nucleon for both protons and helium the pulses lie within the
region of scatter of the symmetrical distributions of pulses
from particles with energy greater than 1200 MeV/nucleon.
Statistical methods are used to obtain the spectrum in this
range and the accuracy varies according to how far into the
symmetrical minimum ionizing distribution the pulses lie.

The errors on the differential proton and helium intensities
range from about 5% at the low energy end of this range to

© The Insitute of Physics and the Physical Society

about 107 at the high energy end. The background in the pro-
ton distribution below 600 MeV runs between 20 and 40% of
the true counts. Various subtraction processes and compari-
son with lower latitude data enable the true counts to bé ob-
tained and these counts separated into primary and secondary
components. Errors on these differential points range from
3-5%. At the location where the proton and helium distribu-
tions cross, the helium nuclei dominate and the proton spec-
trum cannot be determined in the range 60 + 15 MeV. The
background in the helium distribution below 400 MeV runs be-
tween 10 and 25% of the true counts. Again various subtrac-
tion processes and comparison with lower latitude data enable
the true counts to be obtained to an accuracy approximating
to the statistical accuracy. We estimate that the systematic
errors on the integral and differential proton and helium in-
tensities are about +3-6% for the whole series of flights;
however, the relative errors when comparing individual flights
are +2% when not limited by statistical errors. As a result
the features of the modulation are defined somewhat more
accurately than the spectrum itself and indeed we are able to
observe statistically significant modulation effects at low
energies for a 1% change in neutron monitor intensity.

The data are received in terms of a two-dimensional 256 X 256
pulse height matrix with another bit signifying whether the
individual pulse height should be multiplied by 8 or not. This
gives a total dynamic range of 2048 in each dimension. The
limits of computer storage permit the read-out of only a 64 x
64 pulse height matrix, however, so it is necessary to examine
the entire distribution by selecting various 64 X 64 matrices.
In figure 1 we show a print-out of a matrix containing pro-
tons and relativistic helium for a typical flight.

The data we have obtained have been divided into two epochs—
one where the average Mount Washington bi-hourly rate is
2320, the other where it is 2420, since a majority of flights
were made at approximately these levels. Data from flights
made at slightly different levels (mainly low latitude flights)
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have been corrected to these levels using the observed fea-
tures of the modulation. The integral spectrum for protons is
shown in figure 2. The primary proton intensities at 3. 2,
5.6,10.2,12.1,and 15.7 GV are determined from extrapola-
tion of the growth curve for relativistic singly charged parti-
cles (effectively protons of greater than 1200 MeV) to the top
of the atmosphere, correcting for re-entrant albedo (electrons)
and using the calculated geomagnetic cut-offs appropriate to
the flight.locations. These absorption curves are shown in
figure 3. Determination of this part of the proton spectrum

is most difficult since none of the detectors in use discrimi-
nates against either or both of the relativistic secondary
mesons and protons produced in the atmosphere above the de-
tector as well as the re-entering electrons. Our results on
the intensity of primary protons and on the growth of the rela-
tivistic particles are consistent with those measured earlier
at similar latitudes by McDonald (1958) and Balasubrahman-
yan et al. (1962). A separate study shows that the primary
proton intensities at high energies previously deduced from
emulsion studies are probably underestimated relative to those
obtained using Cerenkov-scintillators. It should be noted that
the points at 10.1 and 15.7 GV are obtained from extrapolation
of the west and east pointing portions of the rotating flight.
The point at 1.9 GV represents the extrapolation of the rela-
tivistic particle distributions in the high latitude flights. The
points below 1.9 GV are obtained directly from the differen-
tial spectrum measured by the detector and corrected for
secondary protons. This differential spectrum is shown in
figure 4 along with the differential intensities obtained by
comparing the 1.9, 3.2 and 5. 6 GV integral points.

The integral spectrum for helium nuclei is shown in figure 5.
The intensities at 3. 2,5.6 and 12.1 GV are determined from
the extrapolation of the exponential growth curve of these
nuclei in the atmosphere (mean free path ~ 55 g cm™2). The

other points are obtained directly from the differential spectra
measured by the detector. These differential intensities are
shown in figure 6 along with the differential intensity obtain-
ed by comparing the 3.2 and 5. 6 GV integral points. In the
case of the helium nuclei the differential and integral spectra
obtained using the detector itself and the inferred geomag-
netic cut-offs overlap, and are in very good agreement.

The comparative spectra and the details of the modulation of
protons and helium nuclei as deduced from this study are dis-
cussed in an accompanying paper (Webber 1965). We summa-
rize these results here briefly as follows:

Modulation: (i) Depends approximately on 1/8 for

0.45 < B < 0. 85 for both components and (ii) at the same
velocity, the modulation for protons is at least twice that for
helium nuclei.

Comparative spectra: (i) Ratio of proton to helium nuclei dif-
ferential intensities (P/He) remains constant at a value of
about 8 as a function of rigidity between 2 and 16 GV. Below
2 GV it increases rapidly. (ii) P/He as a function of energy/
nucleon varies continuously from a value of about 5 at 200
MeV/nucleon to about 20 above 6 MeV/nucleon. In addition,
this ratio is a function of the amount of modulation.
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Discussion

J.R. WINCKLER. Is a Fermi process during modulation equivalent to a simple potential difference between the Earth and

near galactic space?

W.R. WEBBER. In the sense that the fractional energy loss A€/e is constant with energy,I believe that it is. Also the A/Z de-
pendence is equivalent for weak scattering since the particles find themselves being continuously scattered and, hence, continu-
ously losing energy. However, in the Fermi process the net energy loss is a statistical one, depending upon how long the par-

ticle is trapped in the expanding field.
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