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Abstract

We argue that the following three statements cannot all be true: (i) Hawking
radiation is in a pure state, (ii) the information carried by the radiation is emitted
from the region near the horizon, with low energy effective field theory valid beyond
some microscopic distance from the horizon, and (iii) the infalling observer encounters
nothing unusual at the horizon. Perhaps the most conservative resolution is that
the infalling observer burns up at the horizon. Alternatives would seem to require
novel dynamics that nevertheless cause notable violations of semiclassical physics at
macroscopic distances from the horizon.
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1 Introduction

The black hole information paradox [1] presents a sharp conflict between quantum theory

and general relativity, and so is an important clue to their unification. Gauge/gravity duality

has provided some insight, giving strong evidence that all information is carried away by the

Hawking radiation. It is widely believed that an external observer sees this information

emitted by complicated dynamics at or very near the horizon, while an observer falling

through the horizon encounters nothing special there. These three properties — purity of

the Hawking radiation, emission of the information from the horizon, and the absence of

drama for the infalling observer — have in particular been incorporated into the axioms of

black hole complementarity (BHC) [2, 3].

Various thought experiments have been examined [4, 5], and argued to show no inconsis-

tency between the observations of the external and infalling observers. For example, when a

bit is thrown into a black hole, then as long as there is a minimum time of order rs ln(rs/lP)

before the bit thermalizes and can be reemitted with the Hawking radiation, no observer will

see illegal quantum cloning. This time scale has an interesting resonance with ideas from

quantum information theory and from Matrix theory [6, 7, 8, 9], which suggest that it may

actually be achieved.

There would be an inconsistency if one were to consider a large Hilbert space that de-

scribes both observers at once. Such a Hilbert space appears when quantum gravity is treated
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as an effective field theory, but it cannot be part of the correct theory of quantum gravity if

BHC holds. This is consistent with the idea of holography, wherein quantum gravity is to be

constructed in terms of degrees of freedom that are highly nonlocal from the bulk point of

view. For guidance in such uncharted waters, as in the earlier revolutions of relativity and

quantum theory, it is important to ask what observations are actually possible.

We will consider first a thought experiment that is a small variation on that of Ref. [4],

differing in that it uses the naturally produced Hawking pairs rather than introducing ad-

ditional entangled ingoing bits. This leads us to a rather different conclusion, that the

thermalization time does not protect us from an inconsistency of BHC. Rather, if the ex-

perience of the outside observer is as we have assumed, then the infalling observer must

encounter high energy quanta at the horizon. Our first thought experiment requires these

only in low partial waves. However, a second thought experiment, using a detector lowered

through the potential barrier to the near-horizon region, allows us to probe higher partial

waves and come to the same conclusion about these. Thus, the infalling observer either

burns up at the horizon, or there must be some novel and likely nonlocal dynamics that

extends a macroscopic distance from the horizon, as recently proposed in Refs. [10]. If the

latter, we find that the dynamics would have to be of a rather complicated form.

This analysis was inspired in part by the bit models of Refs. [11, 12, 10, 13, 14], and

in particular by the theorem that purity of the Hawking radiation implies that the horizon

cannot be ‘information-free.’ We have tried to understand the consequences of this argument

for complementarity, and to flesh out the bit model into a more complete picture of the

dynamics. We find that even some of the scenarios proposed in these works are ruled out.

2 Complementarity is not enough

In considering a slight variant on the thought experiment of Susskind and Thorlacius [4], we

are unable to find an outcome that is consistent with the postulates of black hole comple-

mentarity as stated in Ref. [2]:

Postulate 1: The process of formation and evaporation of a black hole, as viewed

by a distant observer, can be described entirely within the context of standard

quantum theory. In particular, there exists a unitary S-matrix which describes

the evolution from infalling matter to outgoing Hawking-like radiation.

Postulate 2: Outside the stretched horizon of a massive black hole, physics can

be described to good approximation by a set of semi-classical field equations.

Postulate 3: To a distant observer, a black hole appears to be a quantum system

with discrete energy levels. The dimension of the subspace of states describing a
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black hole of mass M is the exponential of the Bekenstein entropy S(M).

These postulates do not refer to the experience of an infalling observer, but Ref. [2] states

a ‘certainty,’ which for uniformity we label as a further postulate:

Postulate 4: A freely falling observer experiences nothing out of the ordinary

when crossing the horizon.

To be more specific, we will assume that postulate 4 means that the probability for an

infalling observer to encounter a quantum with energy E � 1/rs (measured in the infalling

frame) is suppressed by an exponentially decreasing adiabatic factor as predicted by quantum

field theory in curved spacetime. We will argue that postulates 1, 2, and 4 are not consistent

with one another for a sufficiently old black hole.

Consider a black hole that forms from collapse of some pure state and subsequently

decays. Dividing the Hawking radiation into an early part and a late part, postulate 1

implies that the state of the Hawking radiation is pure,

|Ψ〉 =
∑
i

|ψi〉E ⊗ |i〉L . (2.1)

Here we have taken an arbitrary complete basis |i〉L for the late radiation. Following the

ideas of Refs. [15, 6], we make the division after the Page time when the black hole has

emitted half of its initial Bekenstein-Hawking entropy; we will refer to this as an ‘old’ black

hole. The number of states in the early subspace will then be much larger than that in the

late subspace and, as a result, for typical states |Ψ〉 the reduced density matrix describing

the late-time radiation is close to the identity. We can therefore construct operators acting

on the early radiation, whose action on |Ψ〉 is equal to that of a projection operator onto

any given subspace of the late radiation; this is shown explicitly in appendix A.

To simplify the discussion, we treat gray-body factors by taking the transmission coeffi-

cients T to have unit magnitude for a few low partial waves and to vanish for higher partial

waves. A more complete discussion of gray-body factors is included in appendix B and shown

to lead to the same basic conclusion that we reach below. Since the total radiated energy

is finite, this allows us to think of the Hawking radiation as defining a finite-dimensional

Hilbert space. The argument in appendix A assumes that the state of the Hawking radia-

tion is effectively random within this space, as is widely assumed. We will argue later that

this is not necessary. We also assume, as in Ref. [6], that the observer knows the initial state

of the black hole and also the black hole S-matrix.

Now, consider an outgoing Hawking mode in the later part of the radiation, with lowering

operator b. We take this mode to be a localized packet with width of order rs corresponding
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to a superposition of frequencies O(r−1s ). We can project onto eigenspaces of the number

operator b†b. In other words, an observer making measurements on the early radiation can

know the number of photons that will be present in a given mode of the late radiation.

Following postulate 2, we can now relate this Hawking mode to one at earlier times, as

long as we stay outside the stretched horizon. The earlier mode is blue-shifted, and so may

have frequency ω∗ much larger than O(r−1s ) though still sub-Planckian.

Next consider an infalling observer and the associated set of infalling modes with lowering

operators a. Recall that Hawking radiation arises precisely because

b =

∫ ∞
0

dω
(
B(ω)aω + C(ω)a†ω

)
, (2.2)

so that the full state cannot be both an a-vacuum (a|Ψ〉 = 0) and a b†b eigenstate. Here we

have again used our simplified gray-body factors.

The application of postulates 1 and 2 has thus led to the conclusion that the infalling

observer will encounter high-energy modes. Note that the infalling observer need not have

actually made the measurement on the early radiation: to guarantee the presence of the high

energy quanta it is enough that it is possible, just as shining light on a two-slit experiment

destroys the fringes even if we do not observe the scattered light. Here we make the implicit

assumption that the measurements of the infalling observer can be described in terms of an

effective quantum field theory. Instead we could simply suppose that if he chooses to measure

b†b he finds the expected eigenvalue, while if he measures the noncommuting operator a†a

instead he finds the expected vanishing value. But this would be an extreme modification

of the quantum mechanics of the observer, and does not seem plausible.

Fig. 1 gives a pictorial summary of our argument, using ingoing Eddington-Finkelstein

coordinates. The support of the mode b is shaded. At large distance it is a well-defined

Hawking photon, in a predicted eigenstate of b†b by postulate 1. The observer encounters

it when its wavelength is much shorter: the field must be in the ground state a†ωaω = 0, by

postulate 4, and so cannot be in an eigenstate of b†b. But by postulate 2, the evolution of

the mode outside the horizon is essentially free, so this is a contradiction.

To restate our paradox in brief, the purity of the Hawking radiation implies that the

late radiation is fully entangled with the early radiation, and the absence of drama for the

infalling observer implies that it is fully entangled with the modes behind the horizon. This

is tantamount to cloning. For example, it violates strong subadditivity of the entropy,

SAB + SBC ≥ SB + SABC . (2.3)

Let A be the early Hawking modes, B be our outgoing Hawking mode, and C be its interior

partner mode. For an old black hole, the entropy is decreasing and so SAB < SA. The

absence of infalling drama means that SBC = 0 and so SABC = SA. Subadditivity then gives
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r = 2M r ~ 8M

Figure 1: Eddington-Finkelstein coordinates, showing the infalling observer encountering
the outgoing Hawking mode (shaded) at a time when its size is ω−1∗ � rs. If the observer’s
measurements are given by an eigenstate of a†a, postulate 1 is violated; if they are given by
an eigenstate of b†b, postulate 4 is violated; if the result depends on when the observer falls
in, postulate 2 is violated.

SA ≥ SB + SA, which fails substantially since the density matrix for system B by itself is

thermal.

Actually, assuming the Page argument [15], the inequality is violated even more strongly:

for an old black hole the entropy decrease is maximal, SAB = SA − SB, so that we get from

subadditivity that SA ≥ 2SB + SA. Appendix A makes an equivalent assumption, the

randomness of the Hawking state, in order to show that measurements of the early radiation

predict the state of the late mode with high fidelity. We see from the subadditivity argument

that this strong assumption is not needed; it is sufficient that the entropy of the black hole

be decreasing. From another point of view, one need not be able to predict the state with

perfect fidelity; rather, any information about the state of the b mode precludes the state

being annihilated by a.

One might ask if there could be a possible loophole in the argument: A physical observer

will have a nonzero mass, and so the mass and entropy of the black hole will increase after
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he falls in. However, we may choose to consider a particular Hawking wavepacket which is

already separated from the streched horizon by a finite amount when it is encountered by

the infalling observer. Thus by postulate 2 the further evolution of this mode is semiclassical

and not affected by the subsequent merging of the observer with the black hole. In making

this argument we are also assuming that the dynamics of the stretched horizon is causal.

Thus far the discussion applies to a black hole that is older than the Page time; we

needed this in order to frame a sharp paradox using the entanglement with the Hawking

radiation. However, we are discussing what should be intrinsic properties of the black hole,

not dependent on its entanglement with some external system. After the black hole scram-

bling time [6, 7], almost every small subsystem of the black hole is in an almost maximally

mixed state. So if the degrees of freedom sampled by the infalling observer can be considered

typical, then they are ‘old’ in an intrinsic sense. Our conclusions should then hold. If the

black hole is a fast scrambler the scrambling time is rs ln(rs/lP), after which we have to

expect either drama for the infalling observer or novel physics outside the black hole.

We note that the three postulates that are in conflict — purity of the Hawking radiation,

absence of infalling drama, and semiclassical behavior outside the horizon — are widely

held even by those who do not explicitly label them as ‘black hole complementarity.’ For

example, in the fuzzball proposal [11], one might imagine that if some tunneling process

were to cause a shell of branes to appear at the horizon, an infalling observer would just go

‘splat,’ and of course Postulate 4 would not hold. However, recent papers in this area (e.g.

[14]) propose a form of complementarity, where an infalling observer sees nothing unusual on

the horizon (though he may be constructed in some dual form on the branes). Further, the

branes are thought of as extending only a microscopic distance above the horizon, essentially

a realization of the stretched horizon. So our argument applies to this proposal as well.

3 Further discussion

3.1 Extension to higher partial waves

It is well known that Hawking radiation from an asymptotically flat Schwarzschild black hole

is dominated by low angular momentum modes; see e.g. [16]. This is a consequence of the

fact that a black hole of Hawking temperaure TH and Schwarzschild radius rs has THrs ∼ 1,

so that high angular momentum modes of energy TH are trapped behind a large barrier

in the effective radial potential. One might therefore be tempted to believe that the issue

discussed in section 2 concerns only a small number of partial waves. Since a local observer is

unlikely to encounter such quanta, one might then conclude that a (much-weakened) version

of postulate 4 might still hold in which the suppression is replaced by a fixed (1/area) power
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law.1

This would already be a striking result: these quanta must appear quite close to the

horizon (see Fig. 1) and so violate the standard wisdom that the horizon is not a distinguished

location. However, we will argue for an even stronger result, by considering a thought

experiment in which the centrifugal barrier is penetrated.

As noted long ago by Unruh and Wald [17], it is possible to ‘mine’ energy from the modes

trapped behind the effective potential. The basic procedure is to lower some object below

the potential barrier, let the object absorb the trapped modes, and then raise the object back

above the barrier. Unruh and Wald thought of the object as a box that could be opened

to collect ambient radiation and then closed to keep the radiation from escaping. One may

also visualize the object as a particle detector, though the two are equivalent at the level

discussed here.

We analyze a particular version of the the mining process in appendix C in order to

address gravitational back-reaction and other concerns not considered in [17]; see also [18]

for similar conclusions. While these additional issues limit the rate at which our process can

mine energy to below that predicted by [17] (see footnote 6), they do not change the basic

result that energy can be extracted from the high angular momentum modes. In fact, we

are unable to identify any fundamental constraint that would forbid the extraction of energy

from any mode separated from the horizon by more than a Planck distance `p.

In the context of such a mining operation, the arguments of section 2 can be applied to

the higher partial waves as well. One need only consider the internal state of the mining

equipment to be part of the late-time Hawking radiation. In particular, postulate 2 can be

used to evolve the mode b to be mined backward in time and to conclude for an old black

hole that, even before the mining process takes place, the mode must be fully entangled with

the early-time radiation. Postulate 4 is then violated for these modes as well, suggesting

that the infalling observer encounters a Planck density of Planck scale radiation and burns

up. One might say that the black hole is protected by a Planck-scale firewall.

Note that this firewall need not be visible to any observer that remains outside the

horizon. All that we have argued is that the infalling observer does not experience a pure

state. There remains considerable freedom in the possible reduced density matrices that

could describe a few localized degrees of freedom outside the black hole, so that this matrix

might still agree perfectly with that predicted by Hawking [19]. In this case any local signal

that an external observer might hope to ascribe to the firewall at distance 1/ω∗ cannot be

disentangled from the Unruh radiation that results from probing this scale without falling

into the black hole.

1In addition, one would need to propose a mechanism through which these quanta would arise from the
infalling perspective. This would appear to require that the infalling observer experience violations of local
quantum field theory at this (power-law-suppressed) level.
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3.2 Relaxing postulate 2?

Postulate 2 plays a crucial role in any version of our argument, allowing us to use low energy

effective gravity to evolve b in time. The purity of Hawking radiation implies a breakdown of

semiclassical physics, but the usual complementarity assumption as stated in this postulate

is that the complicated dynamics that leads to re-emission of information takes place, from

the point of view of the exterior observer, only on the stretched horizon a Planckian distance

above the event horizon. A possible alternative to the firewall is thus that this postulate

should be relaxed, giving some novel (and perhaps non-local) evolution that extends a finite

distance from black hole as has recently been proposed in Ref. [10]. We agree with [10] that

one would like to keep such novel physics to a minimum.

Let us reflect on this point further. Note that our thought experiment is very similar

to that in Ref. [4], except that instead of using bits thrown into the black hole, it uses

the naturally produced Hawking bits. In the former case, an observer who has seen the

exterior bit cannot see its interior clone, basically because it is too deep in the interior

after a scrambling time of at least rs ln(rs/lP). In the case we consider, the scrambling time

does not seem to enter in the same way: the infalling observer encounters the high energy

quantum right behind the horizon, at a distance ω−1∗ .

We should therefore ask how the scrambling time might affect the argument. Decay is

not an equilibrium process, and after emission of a Hawking quantum there will be a delay

before the black hole returns to its typical state, just as there is when it absorbs a quantum.2

It is interesting that the conjectured fast-scrambling time rs ln(rs/lP) is the same magnitude

as the time during which the Hawking mode moves out from the stretched horizon to a

macroscopic distance O(2rs), and during which it redshifts from a near-Planckian energy to

O(r−1s ). We therefore investigate what form of time evolution would be needed to restore

postulate 4.

Consider an old black hole containingN bits in a basis state |j〉; the full state of the system

is given by a sum over j, entangled with the outgoing Hawking radiation. Immediately after

emission of a Hawking mode (which we idealize as a single bit) from the stretched horizon,

postulate 4 requires that the mode be entangled with the modes behind the horizon. We

must therefore use a state of N + 1 bits to describe the resulting hole, so that the evolution

is

|j〉 →
∑
k

|j, k; k〉 . (3.1)

We have taken a convenient basis in which k is the state of the Hawking bit and we have

singled out the interior bit with which it is entangled. After the thermalization time, the

2To be precise, it never reaches a fully typical state, as additional emissions occur in the meantime.
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hole has only N − 1 bits, and∑
k

|j, k; k〉 →
∑
l,m

|l;m〉〈l;m|j〉 . (3.2)

The N bits of j are mapped into the N − 1 bits of l plus the outgoing bit m. The effect is

that one bit of entanglement with the earlier radiation is transferred to to the outgoing bit

k.

Eq. (3.2) describes unitary evolution from an N bit space indexed by j to (N − 1) + 1

bit spaces indexed by l and k. The state on the left is embedded in a space of N + 2

bits, but the evolution has been specified only when two are in a definite state. For any

other state of these two bits there is a high energy quantum near the horizon, which should

be atypical in the black hole Hilbert space. Our description differs from the bit models of

[11, 12, 10, 13, 14] through the explicit description of these bits before thermalization occurs,

i.e. the intermediate state in Eqs. (3.1, 3.2). This will play a key role below. Note that the

evolution (3.2) cannot be thought of as simple thermalization of the black hole, because it

evolves from a Hilbert space of N + 1 bits to one of N − 1 bits.3 Rather, it acts unitarily on

the whole {black hole + outside Hawking mode} system.

In other words, we have again arrived at the above-mentioned possibility that novel and

perhaps non-local dynamics extends a finite distance `new from the black hole. The size of

`new will set the scale of radiation encountered by the infalling observer. If this novel physics

is associated with thermalization, then `new ∼ rs as proposed in [10] so that an infalling

observer sees only radiation with ω∗ ∼ r−1s in rough agreement with the prediction of local

field theory.

Perhaps this is the way things work though, if so, there seem to be significant further

implications. Ref [10] envisioned this new effect as acting only on a few partial waves of

otherwise essentially free fields. The analogous statement here would be that it acts on the

internal state of any mining equipment used to extract energy from the black hole, including

for example notes that the equipment might print on paper and then lock in a vault in order

to record the results of the experiment.

Even this appears appears to be insufficient. Let us suppose that the equipment can

manipulate the quantum data in the storage bit, say on receipt of a signal from far away, so

as to perform an arbitrary unitary U transformation on the storage bit. Then the analogue

3We could try to describe this as acting only on the black hole degrees of freedom by projecting with a
Hawking mode 〈k′| to get

|j, k′〉 →
∑
l

|l〉〈l; k′|j〉 . (3.3)

This is nonunitary evolution from a space of N + 1 bits to one of N − 1 bits: note that k′ is in the ket on the
left and the bra on the right. This is similar to the nonunitary evolution appearing in the black hole final
state conjecture [20].
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of equation (3.1) becomes

|j〉 →
∑
k

|j, k;Uk〉 . (3.4)

We might take U to permute the storage bit basis states k, or we might take it to act as

the phase (−1)k. For each |j〉, allowing U to range over all unitary operations generates a

basis for a Hilbert space of dimension 4. In this sense, the right hand side of (3.4) spans

a full N + 2 bit Hilbert space. There can thus be no U -independent analogue of equation

(3.2) involving only a remaining N − 1 bit black hole and 1 additional storage bit. Note

that explicit dependence of the Hamiltonian on U would violate the usual rules of quantum

mechanics.

Unless there is some physical constraint that restricts their initial state, including any

other finite number of bits is not helpful. Without such a restriction, these bits can neither

provide a useful record of transformation U , nor can they be used as an empty box into which

to deposit the information about U in (3.4). They simply add equally to the dimensions of

the Hilbert spaces on the left- and right-hand sides of the supposed new version of (3.2) with

no effect on the 2 bit mismatch noted above.

Since one clear restriction is the existence of the storage bits themselves, an effect that

destroys these bits as they are transported back to large r might suffice. A final alternative

might be to couple to the infinite number of states associated with occupation numbers in

outgoing radiative modes, though one would expect such a coupling to modify even the mean

rate at which energy and/or information escape from the black hole. Seeing no more gentle

alternatives, we therefore disagree with [10] that this new physics can be ‘innocuous’ in all

of the senses described there.

The alternative would appear to be that some yet unknown new physics (or some effect

that we have neglected) simply prevents energy from being mined closer to the horizon than

`new. This might be a new fixed scale or some geometric mean of `p and rs. There would

then be no obvious reason to believe that infalling observers experience radiation above the

scale 1/`new, though one would certainly expect them to see some violation of local quantum

field theory. This scenario is realized in certain models of local quantum field theory that

violate local lorentz invariance [21]. In these models, there are simply no outgoing modes

within distance `new of the horizon. Some additional physics would of course be needed to

transfer information to the Hawking-like modes at the scale `s, but since we have removed

the possibility of mining the radiation at a lower scale, this effect can now be limited to the

natural Hawking-like modes themselves.
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4 Conclusions

Historically, the black hole information paradox presented three main alternatives, each

problematic: information loss, purity of the Hawking radiation, and remnants. The discovery

of gauge/gravity duality pointed to purity, and to a fundamentally nonlocal formulation of

quantum gravity. Our work again seems to present some sharp and perhaps unpalatable

alternatives: a firewall at the horizon, or novel and probably nonlocal dynamics extending

a macroscopic distance outside the horizon. (We note that the firewall also has elements of

nonlocality, in that its location, the horizon, is not determined by any local feature but by a

global property.) The second alternative has the potential to connect with one of the notable

features of BHC, the fast-scrambling time scale, but our attempt to determine possible forms

of the dynamics leads us to conclude that it would nevertheless cause notable violations of

semiclassical physics at macroscopic distances from the horizon.

The tensions noted in this work may lead the reader to wonder whether even the most

basic coarse-grained properties of Hawking emission as derived in [19] are to be trusted. But

the the thermodynamic picture of black holes now rests on many pillars that remain intact.

Even at the microscopic level, at least in string theory, independent evidence for thermal

emission from black holes comes from studies of low energy excitations of D-branes and from

AdS/CFT. This leads one to suspect that some appropriately weakened version of postulates

2 and 4 might be retained in order to help explain the success of the Hawking calculation,

though finding a consistent scenario remains a challenge.

Let us conclude by briefly commenting on more general causal horizons, which of course

share many features in common with black holes. For example, the reader will note that we

pass through Rindler horizons all the time and do not burn up or experience obvious new

physics. We believe that this is due to an essential difference between Rindler and black

hole horizons. Since Rindler horizons have infinite entropy, their quantum memory never

fills. ‘Young’ Rindler horizons never evolve to become ‘old.’ From another point of view, the

fact that Rindler horizons do not evaporate makes it impossible to apply the arguments of

section 2.

One might also ask about cosmological horizons, such as those in de Sitter space. These

are more like black holes in that they have finite entropy, though they still do not evaporate.

The experimental evidence is also not clear cut. Our present universe is just now emerging

into an era dominated by dark energy. As a result, any cosmological horizons through which

we cross soon should be expected to be young. Even if they behave like fast-scrambling

(rs ln rs) black holes it will be a time ∼ 60 times the age of our universe before they become

old. On the other hand, the fact that early universe inflation must last more than 60 e-

foldings suggests that the associated cosmological horizons may have become old. We leave

for future work the question of whether this would significantly affect its predictions for
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cosmology and whether this argues that, despite their finite entropy, cosmological horizons

differ fundamentally from black holes.
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A Approximate projection operators

Consider the projection operator onto state |i〉L in some orthonormal basis for the late

radiation, P i = |i〉L〈i|L. We consider the case that the Hawking state |Ψ〉 is chosen with

uniform measure, as in the microcanonical ensemble; in Appendix B we will discuss a slight

generalization. Then the operator

P̂ i = L|ψi〉E〈ψi|E , (A.1)

which acts on the state of the early radiation, allows us to anticipate the measurement of

P i if E � L. Here E and L are the dimensions of the early and late Hilbert spaces (so

1 ≤ i, j, . . . ≤ L, while 1 ≤ a, b, . . . ≤ E for an E-basis to be introduced later). That is,

P̂ i|Ψ〉 ≈ P i|Ψ〉 = |ψi〉E ⊗ |i〉L . (A.2)

If the |ψi〉E were orthogonal with equal norms, this would be an equality, and we show that

it approaches this for typical states |Ψ〉 when L� E.

The relative error is

E =
‖(P i − P̂ i)|Ψ〉‖2

‖P i|Ψ〉‖2
= (1− L〈ψi|ψi〉E)2 + L2

∑
j 6=i

|〈ψi|ψj〉E|2 (A.3)

Expanding in an orthonormal basis |ψi〉E =
∑E

a=1 cia|a〉E, the average over |Ψ〉 with the

uniform measure gives

ciac∗jb =
1

LE
δijδab , ciac∗jbckcc

∗
ld =

1

L2E2
(δijδklδabδcd + δilδjkδadδbc) (A.4)
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(dropping terms of relative order 1/LE), and so

〈ψi|ψj〉E =
1

L
δij , 〈ψi|ψj〉E〈ψk|ψl〉E =

1

L2
δijδkl +

1

L2E
δilδjk . (A.5)

Then for E � L� 1,

E =
L

E
. (A.6)

This decreases exponentially after the halfway point of the black hole’s life. While the explicit

calculations above refer to projections onto a one-dimensional space, (A.6) also holds for more

general projections given by sums of the P̂ i above.

B Effects of Gray-body factors

In the linear approximation, each quantum field outside the black hole may be decomposed

using spherical harmonics. Each mode then leads to an effective 1+1 scattering problem in

an effective potential which depends on the mode’s angular momentum j. The annihilation

operators b, c, d corresponding to the the outgoing mode outside the barrier (b), the incoming

mode outside the barrier (c), and the outgoing mode inside the barrier (d) are then related

by reflection and transmission coefficients R, T through b = T ∗d+ RT ∗

T
c, so that

Nb = |T |2Nd +RT ∗d†c+R∗Tc†d+ |R|2Nc. (B.1)

On the other hand, (2.2) now becomes

d =

∫ ∞
0

dω
(
B(ω)aω + C(ω)a†ω

)
. (B.2)

As usual in a scattering problem, the incoming modes on opposite sides of the barrier are

completely independent. Thus c, c† commute with aω, a
†
ω.

Although the gray-body coefficients complicate the relation between the outgoing Hawk-

ing modes b and the infalling modes a, it remains true that the number operators Nb, Naω

fail to commute unless the transmission coefficient T is very small. In particular, even when

acting on a state in the a, ã, and c vacuum (c|ψ〉 = aω|ψ〉 = ãω|ψ〉 for all ω) we have

Nb|ψ〉 = T (T ∗d† +R∗c†)

∫ ∞
0

dω C(ω)a†ω|ψ〉, (B.3)

which for an infalling observer contains of order |T |2 particles for small T .

Since T decreases exponentially for large j, the state (B.3) is indistinguishable from the

infalling vacuum for large j. But for the first few partial waves it leads to a noticeable flux

of particles for infalling observers.
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Due to gray body factors, the state of the Hawking radiation also deviates from the

microcanonical ensemble assumed in Appendix A. To model this effect we replace

δij/L→ pjδij , δab/E → p̃aδab (B.4)

in the expectation values (A.4), with the pi and p̃a each summing to unity. Then the

expectation values (A.5) become

〈ψi|ψj〉E = piδij , 〈ψi|ψj〉E〈ψk|ψl〉E = pipkδijδkl + pipk(
∑

a p̃
2
a)δilδjk . (B.5)

For the approximate projection operator we take

P̂ i = |ψi〉E〈ψi|E/pi . (B.6)

One then finds

E =

∑
a p̃

2
a

pi
. (B.7)

The numerator is of order 1/E ′ where E ′ is the number of states of the early radiation that

are populated with significant probability. The denominator is similarly of order 1/L′ for

states of the final radiation that are populated with significant probability, so the conclusion

is the same as before for these states. Note that we have assumed that the late-time density

matrix is diagonal in the late basis i in which we project. The semi-classical analysis [19]

suggests that this is the case, to good approximation, for the occupation number basis.

C Black hole mining revisited

We now study a specific process for mining energy from the high angular momentum modes

of a (say, Schwarzschild) black hole’s thermal atmosphere in order to examine constraints

beyond those addressed in [17]. These modes lie close to the horizon. We therefore wish to

lower a detector to within a proper distance L� rs of the horizon, so that we probe modes

of angular momentum rs/L � 1. We take the detector to be of size ∼ εL and (unexcited)

mass mdet = ε−1L−1. Here ε is a small constant (e.g., 1/100 or 10−6) independent of rs and

the Planck scale `p. The detector is attached to one end of a tension µ cosmic string.4 This

attachment presumably makes use of an appropriate monopole that allows the string to end,

which we think of as part of our detector. The other end of the cosmic string is attached

4The extraction of energy from black holes via cosmic strings was also studied by Lawrence and Martinec
[22] and by Frolov and Fursaev [23]. They considered strings that pierce the horizon, while we intentionally
keep our apparatus outside. We avoid direct coupling to the black hole so as not to confuse our investigation
of the high angular momentum modes in the thermal atmosphere of the black hole.
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to a static Dyson sphere of radius r0 ∼ ε−1rs which completely encloses the black hole.5 We

work in d ≥ 4 spacetime dimensions.

The detector is to be lowered from r0 to within a proper distance L� `p of the horizon,

where the locally measured temperature is Tloc ∼ 1/L. Since mdet � Tloc, the detector can

remain stable in this thermal bath. In particular, there is little danger of it colliding with

an anti-detector in black hole’s thermal atmosphere.

At higher altitudes the detector does not interact significantly with the black hole’s

thermal atmosphere due to its small physical size and the resulting small cross-section for

absorption. But it will begin to do so at the target height L. The absorption of a Hawking

photon increases the mass of the detector by the relatively small amount Tloc ∼ L−1 = εmdet.

The detector is to be left in place long enough to absorb a Hawking photon (which requires

an asymptotically measured time of order rs) and then lifted back to r0. As discussed in

[17], the net amount of energy extracted from the black hole is of order TH . We must choose

µ = mdet/L ∼ ε−1L−2 so that it can support the weight of the detector at the height L. This

condition also ensures that the local temperature at L satisfies T 2
loc � µ so that closed loops

of string are not a significant part of the thermal atmosphere at this depth. We note that

the natural width µ−1/2 of the cosmic string is much less than L.

It is natural to ask if gravitational back-reaction might prevent our experiment from

taking place. There are potential issues at both large and small scales, but it is easy to

check that both are avoided. Large-scale back-reaction is shown to be small by noting that

the total (asymptotically-measured) energy of our apparatus is small compared to the mass

MBH of the black hole. Indeed, this energy satisfies

Eapparatus . µr0 +mdet = ε−1L−1(rs/εL+ 1) ∼ ε−2rs/L
2 � rs/`

2
p. (C.1)

So since d ≥ 4 we have

Eapparatus �
rs
`2p

(
rs
`p

)d−4

∼MBH , (C.2)

and there is no further restriction on our experiment6.

5We choose a Dyson sphere for simplicity. One could also use orbiting space stations. For small enough
orbital velocities, the motion of the space station should not affect the detector during the time that it is
active.

6 However, back-reaction does prevent one from placing an arbitrary number of such strings near the black
hole. This limits the number of mining processes that can run concurrently and thus the total rate at which
energy can be extracted from the black hole. Since there are ∼ (R/L)d−2 Hawking quanta at the scale L, one
would like to use NA ∼ (R/L)d−2 copies of our apparatus. The constraint Eapparatus �MBH then requires

Ld � r2s`
d−2
p and allows us to mine energy only at rates E/t�MBH/textract for textract = T−1H (rs/`p)

2(1−2/d)

in agreement with [23]. Similar arguments will appear in [18]. Without this constraint, one would obtain
the Unruh-Wald result textract ∼ T−1H .
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At small scales, one might ask whether our waiting detector is close enough to the black

hole to be engulfed by even a small tide raised on the horizon by the gravitational field of

our apparatus. But since tidal effects are short-ranged (∼ 1/rd−1), such a tide will be due

mostly to the detector and the very bottom part of the string (within ∼ L of the horizon).

It can therefore be addressed using the Rindler approximation to the black hole geometry.

Dimensional analysis, the lack of any scales in Rindler space, and the fact that the detector

mass can enter only through Gmdet/TH then imply that there can be no such effect for

L� `p(mdet/Tloc)
1/(d−2) ∼ `pε

−1/(d−2). (C.3)

Our discussion above involved the use of a cosmic string. For more mundane strings, one

would be forced to consider whether the string is in fact strong enough to support its own

weight and that of the detector being raised. It turns out [18] that any sufficiently strong

string acts much like a cosmic string. But this observation raises a final concern: As opposed

to jump ropes and bicycle chains, the tension of a cosmic string is fixed once and for all. We

can choose parameters so that our detector is in static equilibrium at height L (so that the

upward pull from the string balances the gravitational attraction of the black hole), but this

equilibrium is necessarily unstable.

Let us therefore suspend our detector on a pair of cosmic strings, instead of just one, so

that the two strings meet at our detector with some non-zero angle. The upward force then

depends on the angle between the two strings. As with a piano wire, the net force increases

when the string is pulled downward. This effect can be used to stabilize the detector at its

operating location, and the detector can be raised and lowered by moving top ends of the

strings along the Dyson sphere.

Moving the detector adiabatically slowly makes the process reversible so that no excess

energy is left behind in the black hole. In fact, one can perform the experiment well within

the natural black hole evaporation time tevap ∼ rd−1s /`d−2p of a d ≥ 4 an asymptotically

flat black hole without generating significant entropy. This can be seen by first noting that

(C.3) implies, even if the detector were to fall through the horizon, that the formation of

caustics is not relevant to the production of horizon entropy [24, 25]. One may then use

the Raychaudhuri equation parametrized by Killing time instead of affine parameter as in

derivation of the physical process first law [26] to write

∆A ∼ rs

∫
dt dAσ2, (C.4)

where we have taken the right-hand side of the Raychaudhuri equation to be dominated

by the shear contribution σ2 generated by gravitational tides from the moving detector.

Compare with e.g. eqn. (2.7) of [25]. Since tidal effects decrease rapidly with distance, the
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integrals are dominated by the UV scale L and we have

∆A

`d−2p

∼ rs
`d−2p m2

det

Ld−3

(
rs
L

dL

dt

)2

∼ r3s
ε2Lt2

(
`p
L

)d−2

, (C.5)

where dL
dt

represents a typical value characterizing the motion of the detector at the scale

L (which is related to a typical velocity v = rs
L

dL
dt

seen by a typical freely-falling observer

through the redshift factor rs/L). In the final step we have used mdet = ε−1L−1 and we

approximated dL
dt
∼ L/t, where t is the timescale of the experiment. Since L� `p, the result

will be small whenever t &
√
r3s/`p.
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