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The computation of the gravitational radiation emitted by a particle falling into a Schwarzschild
black hole is a classic problem studied already in the 1970s. Here we present a detailed numerical
analysis of the radiated waveforms, spectra and energies, improving significantly on the numerical
accuracy of existing results and extending them to higher multipoles, up to l = 6. This is done by
integrating the Zerilli equation in the frequency domain using the Green’s function method. The
resulting wave exhibits a “ring-down” phase whose dominant contribution is a superposition of the
quasi-normal modes of the black hole. The numerical accuracy allows us to recover the frequencies of
these modes through a fit of that part of the wave. Comparing with direct computations of the quasi-
normal modes we reach a ∼ 10−4 to ∼ 10−2 accuracy for the first two overtones of each multipole.
Our numerical accuracy also allows us to display the power-law tail that the wave develops after
the ring-down has been exponentially cut-off. The amplitude of this contribution is ∼ 102 to ∼ 103

times smaller than the typical scale of the wave.

I. INTRODUCTION

The computation of the gravitational radiation due to
a point-like particle falling into a black hole (BH) is a
classic problem in General Relativity that received much
attention in the 1970s [1–4] (see also the textbook [5] for
discussion and further references).

The problem is of theoretical interest because it de-
scribes an elementary BH perturbation which, although
relatively simple, exhibits characteristic features of more
general perturbation scenarios. It is also a simple proto-
type of the much more complicated problem of the coa-
lescence of binary BH systems, which plays an important
role in the search for gravitational waves (GWs) at inter-
ferometers such as LIGO and Virgo.

The general features of the radiated waveform is by
now well understood [3, 4, 6]. The first part of the
signal the observer receives is called the precursor and
corresponds to the radiation emitted directly from the
in-falling source to the observer. It is therefore insen-
sitive to what happens near the BH and it was shown
in [7] that it can be well described by a resummation
of the Post-Newtonian expansion. Then comes the ring-
down phase which is dominated by a superposition of the
quasi-normal modes (QNMs) of the BH. These are char-
acteristic information of the Schwarzschild metric and
are therefore brought by waves that were reflected in
the neighborhood of the maximum of the effective po-
tential of the problem (the “barrier”), situated at ∼ 1.5
Schwarzschild radii. The QNMs are a very interesting
feature also because they provide a possible bridge be-
tween classical and quantum gravity [8–11]. Finally, the
wave exhibits a power-law tail at large values of the re-
tarded time, after the ring-down has been exponentially
cut-off. This residual radiation corresponds to waves that
were not initially heading towards the observer but ended
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up reaching him by scattering off the background metric
at large distance of the horizon, hence the delay and the
decrease in amplitude.

In this paper, we focus on the case where the infall
is radial and starts at infinity with no initial velocity.
The radiated energy spectrum and waveform can be com-
puted from a numerical integration of a single wave-
equation, the Zerilli equation [2], and this was already
done in the original works [3] and [4]. Apart from a
study of the case where it is falling from finite distance
[12], to our knowledge, there have been no further nu-
merical studies since then. Computations for high values
of the angular momentum and a thorough analysis of the
energy spectrum seem absent in the present literature.

The first part of our work consists in computing the
spectra and waveforms for the l = 2 to 6 multipoles and
also analyzing the energy spectra. The low accuracy in
the original works [3, 4] did not allow such computations.
With the computer resources available today, the accu-
racy can be significantly improved and our computation’s
relative error on the spectra is of order 10−5. This allows
us to cover well the asymptotic parts and extract their
behavior. The waveforms, which are obtained by Fourier
transforming the spectra, reach ∼ 10−4 and ∼ 10−3 at
worst. For l ≤ 4, we are able to keep that precision on a
relatively large interval of retarded time which includes
the beginning of the power-law phase. Once the wave-
form is obtained, we extract the QNM values by fitting
the ring-down phase and then compare the results with
the values obtained through direct computations [13, 14].
This way we determine how “visible” the QNMs are.

The organization of the paper is as follows. In section
II we recall the main formulas describing the production
of gravitational radiation from a radially in-falling test
mass. In section III we present and discuss our results.
All the equations present in our work can be found in
[2–4]. Finally, an account of computational details and
error estimation is presented in the appendix.
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II. THEORETICAL BACKGROUND

In what follows, m andM are the masses of the particle
and BH, respectively. We use units G = c = 1 and the
following definition of the Fourier transform

Ψl(r, ω) ≡ 1√
2π

∫
ψl(r, t)e

iωtdt . (1)

The clear distinction in mass scales between the BH and
the particle allows the problem to be treated within BH
perturbation theory to first order. Therefore, the parti-
cle is a test mass, i.e. moving along the geodesics of the
unperturbed Schwarzschild space-time, and produces a
perturbation hµν (of the Schwarzschild metric) which is
a test tensor field (on the Schwarzschild geometry) since
we only keep first order terms of it in the Einstein equa-
tions. In the classic papers [1, 2], the authors showed
that the linearized Einstein equations can be reduced to
two independent one-dimensional scalar wave-equations
for each l multipole (in the tensor spherical harmonics
decomposition), where l represents the total angular mo-
mentum number. The wave-equation’s effective potential
term has no m dependence since the background metric
is spherically symmetric. In the case of the radial in-
fall of a particle, nor does the source term because of
cylindrical symmetry. Thus the m 6= 0 modes are not
excited. At each l, these equations describe the dynam-
ics of the two eigenstates of the parity operator, which
don’t mix because of the symmetry of the background
metric under parity, and together fully determine the 2l-
pole of hµν . In the case of the radial infall of a particle,
only the so called polar modes1 are excited and we are
left with one equation, the Zerilli equation. Denoting its
solution by ψl, the radial dependence of the 2l-pole of
hµν is ∼ (1/r)ψl(t− r) in the radiation zone. The Zerilli
equation on the frequency domain is [2]

∂2
r∗Ψl + (ω2 − Vl(r))Ψl = Sl(r, ω) (2)

where as usual r∗ = r+2M ln(r/2M−1), and the effective
potential is

Vl(r) =

(
1− 2M

r

)
2λ2(λ+ 1) + 3 2M

r λ
2 + 9

2

(
2M
r

)2
λ+ 9

4

(
2M
r

)3
(λr + 3M)2

(3)

with λ = (l − 1)(l + 2)/2. The source term is

Sl(r, ω) = − 4m

λr + 3M

√
l + 1/2

(
1− 2M

r

)
[√

r

2M
− i 2λ

ω(λr + 3M)

]
eiωT (r) , (4)

1 They are the ones picking (−1)l under parity, i.e. the “true”
scalar, vector, etc, as opposed to the “pseudo” ones picking
(−1)l+1, called axial modes.

where T (r) is determined by the geodesic of the particle
in the Schwarzschild metric,

T (r)

2M
= −2

3

( r

2M

)3/2

− 2
( r

2M

)1/2

+ log

[(√
r/2M + 1

)(√
r/2M − 1

)−1
]
. (5)

The differential equation (2) is solved with boundary con-
ditions of purely ingoing waves at the Schwarzschild ra-
dius and purely outgoing ones at infinity

lim
r∗→−∞

Ψl(r∗, ω) = Al,in(ω)e−iωr∗ , (6)

lim
r∗→∞

Ψl(r∗, ω) = Al,out(ω)eiωr∗ . (7)

These correspond to the fact that the source is always
localized in space and therefore GWs can only be emit-
ted towards the infinities. In order to compute the radi-
ated amplitude of the ω-mode Al,out(ω), it is convenient
to use the Green’s function method. Let y−l (r∗, ω) and

y+
l (r∗, ω) be the solutions of the homogeneous equation

of (2)

∂2
r∗y
±
l + (ω2 − Vl(r))y±l = 0 (8)

with boundary conditions

lim
r∗→−∞

y−l (r∗, ω) = e−iωr∗ , (9)

lim
r∗→∞

y+
l (r∗, ω) = eiωr∗ , (10)

so that they match (6) and (7) in the final solution. At
r∗ →∞ the potential vanishes and y−l tends towards the
analytical form.

lim
r∗→∞

y−l (r∗, ω) = αl(ω)eiωr∗ + βl(ω)e−iωr∗ . (11)

Thus the reflection and transmission coefficients of Vl for
a monochromatic wave coming from plus infinity are

Rl =

∣∣∣∣αl(ω)

βl(ω)

∣∣∣∣2 Tl =
1

|βl(ω)|2
, (12)

which we also compute for reasons made clear in section
A 1. The Wronskian may be written Wl(ω) = 2iωβl(ω)
and, in the radiation zone, one obtains

Ψl,out(r, ω) = lim
r→∞

Ψl(r, ω)

=
eiωr∗

2iωβl(ω)

∫ ∞
−∞

Sl(r̃∗, ω)y−l (r̃∗, ω)dr̃∗ (13)

which by definition of the outgoing ω-mode (7) gives

Al,out(ω) =
1

2iωβl(ω)

∫ ∞
−∞

Sl(r̃∗, ω)y−l (r̃∗, ω)dr̃∗ . (14)

Given the choice of normalization in (1), the radiated
energy spectrum of the l-mode is [2, 3]

dEl
dω

=
1

32π

(l + 2)!

(l − 2)!
ω2|Al,out(ω)|2 . (15)
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The waveform is found using the inverse Fourier trans-
form. Introducing the retarded time u ≡ t− r∗, we have

ψl,out(u) =
1√
2π

∫ ∞
−∞

Ψl,out(r, ω)e−iωtdω

=

√
2

π

∫ ∞
0

<[Al,out(ω)e−iωu]dω . (16)

The last equality comes from (7) and the fact that ψl is
real, i.e. Al,out(−ω) = Āl,out(ω). So the procedure con-
sists in computing y−l through eq. (8) with initial con-
dition given by eq. (9), and then evaluating (14) by ex-
tracting βl(ω) out of eq. (11) and performing the integral.
Once we have Al,out(ω), the energy spectrum is given by
(15) and the wave-function is computed through eq. (16).

III. RESULTS

In this section we present the results of our numerical
integration. A detailed account of the numerical proce-
dure and error estimation is given in appendices A and
B, respectively. From now on we simplify the notation by
dropping the “out” subscript in Al,out(ω) and ψl,out(ω)
and writing fl(ω) ≡ dEl/dω. The figures are collected at
the end of the paper.

A. Analysis of the frequency spectrum

The top and middle panels of figure 1 give the energy
spectrum fl(ω) in both linear and logarithmic scales, the
modulus |Al(ω)| and phase φl(ω) (of Al(ω)). The shape
of the energy spectra is in agreement with the result of
ref. [3]. In table I we list the radiated energies for every
2l-pole, that is

El =

∫ ∞
0

fl(ω)dω . (17)

To better characterize the energy spectrum, we have also
computed the values (ω?l , f

?
l ) at which fl(ω) is maximal

and the following quantities:

〈ω〉l ≡
4M2

El

∫ ∞
0

ωfl(ω)dω , (18)

σl(ω) ≡
√
〈ω2〉l − 〈ω〉2l . (19)

Summing over the angular momenta up to l = 6, we
estimate the total radiated energy to be

6∑
l=2

El = 0.010411(1)mc2(m/M) , (20)

to be compared with the value ' 0.0104mc2(m/M) given
in [3]. To a first approximation, El seems to follow the

l M/(mc)2El f?l /m
2 2Mω?l 2M〈ω〉l 2Mσl(ω)

2 9.1368(9)10−3 3.5943(4)10−2 0.61992(9) 0.5224(1) 0.1961(6)
3 1.1004(1)10−3 3.3977(3)10−3 1.0534(1) 0.8747(2) 0.271(1)
4 1.4947(1)10−4 4.0757(4)10−4 1.4685(2) 1.226(2) 0.329(2)
5 2.1380(2)10−5 5.3971(5)10−5 1.8688(2) 1.582(3) 0.375(3)
6 3.1423(3)10−6 7.5273(8)10−6 2.2726(2) 1.941(4) 0.413(4)

TABLE I: From left to right: Multipole total radiated
energy, energy spectrum’s maximal value, corresponding
frequency, mean value and standard deviation (for fl(ω)

seen as a distribution).

exponential trend proposed in [3], which is ∼ e−2l. We
find that the form

El ' 0.56(3)l0.9(2)e−1.75(5)lmc2(m/M) (21)

actually provides a better fit. Assuming that energies
for l > 6 follow this empirical law, we get the order
of the contribution of the neglected multipoles in (20)
El>6 ∼ 10−7mc2(m/M) which is less than our numerical
precision.

We now turn ourselves to the asymptotic behavior of
the spectra.

1. Low frequency limit

In this limit we find that our numerical results are very
well fitted by

log |φl(ω � 1)− φl(ω = 0)| ' aφl + bφl log(ω) (22)

and

log(fl(ω � 1)) ' afl + bfl log(ω) , (23)

that is, φl and fl have a power-law behavior. Within
our numerical precision, we find that, for the multipoles
l = 2, . . . , 6 that we have studied, φl(ω = 0) is very well
reproduced by2

φl(ω = 0) =
π(l − 3)

6
. (24)

In order to obtain the coefficients aφl , b
φ
l , a

f
l , b

f
l with great

accuracy it is necessary to perform the fit in the very low
frequency region. In Table II we show these coefficients,
obtained by performing a fit at 2Mω ∼ 10−4, and we
find that

fl(ω � 1) ∼ ω2l/3 (25)

reproduces our results very well.

2 Not directly computable because of the 1/ω term in the source
term, but through extrapolation.



4

l aφl bφl afl bfl
2 1.38(1) 0.706(3) −1.84(6) 1.321(8)
3 1.54(2) 0.707(2) −4.40(5) 1.989(7)
4 1.64(1) 0.707(1) −6.92(4) 2.653(6)

TABLE II: The first few fitting coefficients in eqs. (22)
and (23).

For l = 2 we are even able to go down to 2Mω ∼ 10−6

and we get

fl=2(ω � 1) ' 0.176(3) (2Mω)1.332(2)m2 . (26)

For each given l, the low frequency asymptotic behavior
for fl(ω) and φl(ω = 0) can be computed analytically be-
cause it is due to the motion of the particle far from the
horizon, where the trajectory can be well approximated
by the Newtonian one and the GW emission can be com-
puted using the multipole expansion in flat space. For
l = 2 the contribution comes from the mass quadrupole
and the computation is performed in ref. [15] (see also
section 4.3.1 of ref. [5]). The result is

fl=2(ω � 1) =

(
2

3

)7/3
Γ2(1/3)

5π
(2Mω)4/3m2

' 0.1774 (2Mω)4/3m2 , (27)

so our numerical result (26) reproduces very well the ex-
act analytic behavior. This is a significant check of our
numerical procedure. We have also performed this an-
alytical computation for l = 3 and again got agreement
with eqs. (24) and (25). Both equations can be combined
into

Al(ω � 1) ' al(iω)(l−3)/3 , (28)

where al is a positive real number. Finally, the φl(ω)
variation, which is not computable analytically, is found
to be constant with respect to l within our error margins

φl(ω � 1)− φl(ω = 0) ∼ ω0.707 . (29)

2. High frequency limit

For this limit the full relativistic treatment is necessary
and there is no simple analytical expression to compare
with. Here we only focus on fl. The top right panel of
figure 1 clearly suggests an exponential cutoff. We find
that the fitting form

log fl(ω � 1) ' al + blω + cl log(ω) , (30)

gives the best fit. Table III lists the resulting values for
the parameters.

B. Waveforms and quasi-normal modes

In figures 2 to 6 we show, for l = 2, . . . , 6, the am-
plitude spectrum Al(ω), the waveform ψl(u), the fit of

l al bl cl
2 5.34(2) −12.34(4) -3.03(8)
3 10.06(1) −12.26(3) -4.20(9)
4 14.81(1) −12.18(3) -5.42(3)
5 19.73(1) −12.17(4) -6.60(8)
6 24.81(2) −12.15(5) -7.7(2)

TABLE III: Fitting coefficients in eq. (30).

its ringdown phase using QNMs and its power-law tail
(compared to the obtained QNM fit).

In the waveform plots, we observe that the number of
significant oscillations in the ring-down increases with l
while its typical length appears to be the same for all
l. The precursor’s typical length decreases with l. The
typical amplitude decreases quite fast, as suggested by
the empirical law in the corresponding energy (21).

As for the fit of the ring-down phase using QNMs, stud-
ies of more realistic scenarios such as the coalescence of
a BH binary [16] have already shown very good results.
It is therefore expected to work well in the case of the in-
falling particle model since it is numerically much simpler
to treat. Table IV lists the results of the fit for the first
three overtones while table V lists the values obtained
through direct numerical computations, found in [13] for
l = 2 and 3 and [14] for l = 4, 5, 6 (see appendix A, eq.
(A3) for the fitting form). On the top panel of figure 7
we see that our error margins cover the expected values
only for the first overtone (n = 1). Looking at the plots
with the fitting curves, we see that the first mode’s dom-
ination interval is pretty much the same for all l. On the
other hand, the power-law contribution sets in later or is
relatively weaker with increasing l. The high-l graphics
are indeed the ones were the QNMs fitted the wave best,
so the QNM contribution becomes more “visible” with
increasing l. Inversely, in the case of l = 2, the power-
law tail contribution sets in so early that it prevents us
from even having a visible superposition of fit and data.

Finally, concerning the tail of the wave, analytical
studies [6] show that it is actually a superposition
of power-laws and that one has to go quite far in
retarded time in order to see the leading term dominate.
However, at such high values our precision breaks down
so we cannot perform any useful fit but we still display
the graphic result for l = 2, 3, 4 at lower u. The error
on the l = 5, 6 cases is already notable at relatively low u.
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computer resources. l n = 1 n = 2 n = 3
2 0.747(9)− i0.17(2) 0.45(3)− i0.51(9)
3 1.198(2)− i0.18(1) 1.104(8)− i0.54(1) 0.93(4)− i1.5(3)
4 1.616(1)− i0.186(6) 1.580(8)− i0.552(6) 1.34(3)− i1.140(4)
5 2.025(1)− i0.190(4) 1.97(1)− i0.556(9) 1.82(4)− i0.895(8)
6 2.424(1)− i0.190(4) 2.378(8)− i0.572(9) 2.22(4)− i0.805(4)

TABLE IV: Computed QNM values through waveform’s
fit.

l n = 1 n = 2 n = 3
2 0.7473− i0.1779 0.6934− i0.5478
3 1.1989− i0.1854 1.1653− i0.5626 1.1034− i0.9582
4 1.6184− i0.1883 1.5933− i0.5687 1.5454− i0.9598
5 2.0246− i0.1897 2.0044− i0.5716 1.9654− i0.9607
6 2.4240− i0.1905 2.4071− i0.5733 2.3741− i0.9611

TABLE V: Direct computation QNM values.
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Appendix A: Computational details

In this section we present all the algorithms and tech-
niques involved in the calculations. From now on we
use only dimensionless variables. Thus, in what follows,
ω, r∗, Al,out, fl, El and ψl,out actually stand for 2Mω,
r∗/2M , Al,out/(Mm), fl/m

2, M/m2El and ψl,out/m, re-
spectively. Relative errors and margins are denoted using
the symbol δ whereas ∆ is used to denote absolute errors
or integration grid steps, depending on the context.

1. The βl(ω) parameter

Consider equation (11). The convergence towards that
asymptotic form being too slow, we use the next order
terms (as in [12]):

y−l (r∗ � 1, ω) ' αl(ω)eiωr∗ + βl(ω)e−iωr∗ +

1

ωr∗

(
γl(ω)eiωr∗ + δl(ω)e−iωr∗

)
(A1)

We take 47 equally spaced sample points over 5 typical
periods3 2π/ω on y−l and plug them in (A1). Having
four complex unknowns, this gives us an overdetermined
linear system Ax = b, where A is a 47×4 complex matrix
and x = (αl, βl, γl, δl). Then multiplying by AT on the
left we get a 4× 4 matrix equation

ATAx = AT b , (A2)

the solution of which minimizes the residue ||Ax − b||22.
This equation is then solved using the Gaussian elimina-
tion method.

This routine is used repeatedly at increasing r∗, along
with the computation of the integral in (14), thus making
the result more and more precise4. Note that there is no
direct check on the error of βl(ω). However, the fluctu-
ations of its value strongly affecting Al(ω), we take the

3 These values are chosen so as to increase the information input
in our fit and also avoid repeating values which lead to a badly
conditioned system.

4 This is actually true only up to a certain limit because ATA
contains three different orders of magnitude: (∼ 1), (∼ 1/r∗) and
(∼ 1/r2∗), so if r∗ is too large the problem is badly conditioned.
In our case, however, we didn’t reach that point.

http://arxiv.org/abs/gr-qc/0411025
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latter’s good convergence as a guarantee for an accept-
able error on βl(ω). A bit of monitoring at various stages
of the computation confirms that the convergence of the
βl(ω) value is a lot faster than that of the integral in (14).
Another source of confidence is the value Rl(ω) + Tl(ω)
(see eq. (12)) whose fluctuation around 1 also gives qual-
itative information on that error. In practice, we find a
standard deviation of ∼ 10−6 on the ω-grid.

2. The radiation amplitude Al(ω)

For simplicity we write A for Al(ω) since we describe
the computation at a given value of ω and l. We use Nu-
merov’s method to integrate y−l in (8). Starting at finite
r∗ � 0, the initial condition corresponding to (9) is actu-
ally e−iωr∗

∑
k>0 ak(r−1)k for some constants ak = O(1),

at least for small k. We start at r∗ = −700 because that’s
where r− 1 starts being computable (∼ 10−300), in dou-
ble precision. This allows us to neglect the correction to
the initial condition (9). Since the source term is also
negligible at r∗ = −O(100), the integral in (14), which is
computed in the same loop as y−l , does not need any cor-
rections for stating at finite r∗ either. We use the trape-
zoidal rule for this integration because comparison with
other Newton-Cotes formulae shows that it is the fastest
method, in the sense that it starts approximating well at
already big grid steps ∆r∗. This is due to the oscillatory
nature of the integrand making positive and negative er-
rors approximately compensate each other. The overall
convergence is dramatically slow because the source term
(4) goes asymptotically as ∼ r−1/2. But the more we con-
tinue the more the integration’s error grows. Therefore,
we have to use a special method in order to extract that
limit faster.

We define A(r∗) as being the value of (14) where the
integral is truncated on the upper bound at r∗, so that
A = limr∗→∞A(r∗) (remember, the ω and l dependence
is implicit here). On the actual r∗k grid (the discretized
axis), the computed sequence A(r∗k) approximating that
value gives a damped oscillation. We divide the r∗-axis
into intervals of length L which is given by a few typi-
cal periods 2π/ω and index them by n = 0, 1, 2, . . .. We
choose to consider only the average value of A(r∗k) out
of every such interval, call it An (its phase φn), a new
sequence sharing the same limit. So L is a smoothing
parameter. We also calculate βl (and αl) at every n us-
ing the procedure described in section A 1. The routine
stops when the last ten values of |An|2 and φn are all
within an ε = 10−4 margin around their respective mean
values and gives the latter as a result for A. The ε mar-
gin is actually a relative one for |A|2 whereas it is an
absolute one for φ. Thus, if we let the greatest distances
from the mean values be denoted by ∆(|A|2) and ∆φ, the
condition reads δ(|A|2) ≡ ∆(|A|2)/|A|2 < ε and ∆φ < ε.

Once that loop has finished, we start all over again but
with half the previous ∆r∗ step. This goes on until the
difference between two consecutive such computations is

again less than ε (again, relative for |A|2 and absolute for
φ). When finished, we pass to the next ω value.

As for the ω-grid parameters, let ∆ωl be the step and
ωl,max be the maximum value for which we perform the
previous computation. It appears that ωl,max ∼ (l + 1)
is a good choice, as can be seen by looking at the Al(ω)
plots (top left panels of figures 2 to 6) where we have set
(l+1)/2 for the maximum of the displayed ω axis. This is
why we chose ∆ωl = 6(l+1)10−5, so that the precision is
the same for all l. However, we did not choose the ωl,max
value to follow the ∼ (l+ 1) trend. We find instead that
there is a natural limit on the ω axis for the convergence
of the Al(ω) computation, given our precision criteria.
After a given value for fl, apparently common to all l
the program keeps dividing the ∆r∗ step without ever
meeting the required precision. Since the values at ω �
1 are important for the computation of the tail of the
waveform, we set the ωl,max value the higher we can,
that is to that natural limit. This also sets l = 6 as our
limit for l, because the computation for l = 7 would not
give enough points for the spectrum at large frequencies.

3. The radiated waveform ψl(u) and energy
spectrum integrals El, 〈ω〉l and σl(ω)

We consider equations (16), (17), (18) and (19). We
use a high order Newton-Cotes formula for their integra-
tion, the one with 7 stages and of order 8, named Wed-
dle’s formula. We also use Richardson’s extrapolation on
the integrals computed with steps ∆ω and 2∆ω in order
to further increase our precision.

For ψl(u), the l = 2 case must be treated carefully
because Al=2(ω) diverges at the origin. It is true that,
for any value of l, we can only compute Al(ω) for ω > 0
because of the ω−1 factor in the source term. However,
we know from (28) that Al=3(ω = 0) is finite and there-
fore deducible by extrapolation and Al>3(ω = 0) = 0.
For l = 2, the [0,∆ω] contribution cannot be extrapo-
lated. It can however be approximated through the inte-
grand’s analytic behavior at ω → 0 (discussed in section
III A, neglecting the φ(ω) variation). Plugging the later

in
∫∆ω

0
<[Al=2(ω)e−iωu]dω we obtain a solution involv-

ing generalized hypergeometric functions and we Taylor
expand them until the desired precision is reached.

4. Extraction of the QNMs out of the signal

We know that the QNMs are getting more damped
with increasing n. Thus, if we look far enough in the
ringdown phase of the wave, the least damped mode (n =
1) should dominate. However, the more we go at large u
to look for the first mode the more the tail contribution
becomes notable. So our fitting model is

Bl,ne
ωl,n,=u sin(ωl,n,<u+ θl,n) + hl,n , (A3)
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where the last term is an offset which can help compen-
sate the shift due to the slowly appearing tail. It is re-
ally necessary for low l but becomes negligible for high l.
Once we have found the first overtone (n = 1), we sub-
tract it from the waveform and reapply the fit seeking
the second one (n = 2) and so on.

Since there is no prescription for finding the ideal in-
terval on the u axis to perform the fit we run a small
program which tries all possible intervals in [0, 30], re-
taining every time the value of the resulting fitting pa-
rameters. This gives us a 3D plot for each one of them,
where the floor axes are given by the values of the inter-
val’s boundaries. The plots for ω< and ω= exhibit some
flat areas at equal height corresponding to the ensemble
of intervals at which the fit was optimal. We then cut
the plot in horizontal slices of a given thickness ∆z and
create a histogram giving the number of points which lie
inside each one of those slices. The maximum of that
histogram gives us the researched value with absolute er-
ror ∆z/2 but when the spike is not clear enough we take
half its width for an estimation of the error instead. For
n > 1 we sometimes obtain more than one maximum so
we choose based on the coherence with the rest of the
data and by looking at the 3D plot in order to identify
“false” flat areas. The bottom of figure 7 gives an exam-
ple of the 3D graphic and its histogram. As for the B
and θ parameters in (A3), no such flat area is obtained
after the first fit series so we run the program one more
time but with the ω< and ω= values already inserted.

Appendix B: Error estimation

1. Radiated spectrum Al(ω) and fl(ω)

Almost all the computed points meet the precision cri-
teria of section A 2, meaning an estimated ∼ 10−5 pre-
cision on |Al|2 and φ and therefore on |Al| and fl (re-
member that it is an absolute error for φ). The only
exceptions are for l ≥ 4 where points with ω close to zero
(ω ∼ 10−3) have an error of ∼ 10−3. However, |Al| is
very small there and the absolute error it causes in the
calculation of El and ψl is thus negligible. In order to
decrease it as much as possible anyway, we have extrap-
olated those regions using the analytical low frequency
behavior discussed in section III A.

As for the asymptotic behavior fits, in most cases such
as in the high frequency region, there is no prescription
for the ideal interval to fit on, so we estimate the error
on the fitting parameters by their variation when fitting
on different intervals. If, however, the number of points
is small, leaving no choice about the fitting interval, the
error corresponds to a 95% c.l.

2. Radiated energy spectrum characteristics
(table I)

There are three types of error in the computation of
the integrals El, 〈ω〉l and σl(ω): the one due to the rela-
tive error on the integrand, noted δi, the one due to the
discreteness of the integration domain, noted δd, and the
one due to its finiteness, noted δf . δd is estimated by
the relative difference of two integrations with grid steps
∆ω and 2∆ω and δf is estimated using (30). For El we
have δi ∼ 10−5 since fl(ω) ∼ |Al(ω)|2, δd ∼ 10−7 and
δf ∼ 10−8 so δ(El) ∼ 10−5. For 〈ω〉l and σl(ω), we use

∆p(x1, ..., xn) ≈
n∑
k=1

∣∣∣∣ ∂p∂xk
∣∣∣∣∆xk (B1)

for the δi and find δi(〈ω〉l) = 2.10−4 and δi(σl(ω)) =

2.10−4(1 + 2 〈ω〉lσl(ω) ). The δd and δf are again smaller.

Finally, for the maximum f?l we record the smallest gap
between its value and its direct neighbor’s on the ω grid.
However, this value is inside f?l (1 ± ε), so the relative
error for f?l is also given by ε. For the error on ω?l we
simply take half the ω grid step.

3. Radiated waveform ψl(u)

First of all, being interested in the domain u ∈
[−50, 200] for l ≤ 4 and [−50, 50] for l = 5 and 6, the
greatest gap between two consecutive ωu values in the
oscillatory term of (16) is (u∆ω)max = 0.06 � π. Thus
the ω-grid is dense enough to take into account even the
sharper variations of the integrand. The sources of error
are the same as in the previous section although here we
are going to use the absolute analogues for δf and δd. The
relative ones vary a lot near the zeros of the waveform
and aren’t therefore very meaningful. ∆f is estimated
using (30) and (15) to obtain the behavior of |Al(ω)|

|Al(ω � 1)| ≈

√
128π

(l − 2)!

(l + 2)!
e(al+blω)/2ωcl/2−1 . (B2)

Then

∆f,l(u) ≈ 1√
2π

∫ ∞
ωl,max

|Al(ω � 1)| cos(uω)dω (B3)

is a good estimation of the absolute error due to the
neglected part of the frequency domain. Table VI shows
the typical values for ∆d and ∆f which fluctuate well
inside the given order. It also gives the maximum values
of the corresponding waveforms in order to compare the
scales.

The regions where the relative error is maximal are of
course the ones near zeros and towards the end of the
tail. In the latter case, we reach ∼ 10−3 at worst with
one exception, the case of l = 2 where it goes till ∼ 10−2

at the same places. Otherwise, the majority of points has
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l ∆d ∆f |ψ|l,max

2 10−8 10−5 4.2× 10−1

3 10−8 10−9 3.8× 10−2

4 10−9 10−8 6.3× 10−3

5 10−9 10−10 1.2× 10−3

6 10−10 10−11 2.6× 10−4

TABLE VI: Typical values of ∆d and ∆f and reference
scales

∼ 10−4 or even 10−5. Finally, the error due to the one
of the integrand is δi ∼ 10−5 (see section A 2).

As for the QNM, we have already explained how the
errors are computed (see section A 4).
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FIG. 7: Top panel: the computed QNMs through the waveforms fit. The dotted lines’ intersections are the expected
values. Vertical lines link QNMs of the same l while horizontal lines link QNMs with the same n. n increases by

going downwards. Middle panels: the amplitudes Bl,n/Mm and phases θl,n of the first two overtones. Bottom left
panel: example of the 3D plot obtained when fitting the waveform for QNMs on all intervals [a, b] in [0, 30] of u/2M .
Bottom right panel: the corresponding histogram giving the number of points in each horizontal slice of the 3D plot.
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