
ar
X

iv
:1

80
7.

07
32

3v
1 

 [
gr

-q
c]

  1
9 

Ju
l 2

01
8

How predictions of cosmological models depend on Hubble parameter data sets

G. S. Sharov1 and and V. O. Vasiliev1

1Tver state university
170002, Sadovyj per. 35, Tver, Russia∗

We explore recent estimations of the Hubble parameter H depending on redshift z, which
include 31 H(z) data points measured from differential ages of galaxies and 26 data points,
obtained with other methods. We describe these data together with Union 2.1 observa-
tions of Type Ia supernovae and observed parameters of baryon acoustic oscillations with 2
cosmological models: the standard cold dark matter model with the Λ term (ΛCDM) and
the model with generalized Chaplygin gas (GCG). For these models with different sets of
H(z) data we calculate two-parameter and one-parameter distributions of χ2 functions for
all observed effects, estimate optimal values of model parameters and their 1σ errors. For
both considered models the results appeared to be strongly depending on a choice of Hubble
parameter data sets if we use all 57 H(z) data points or only 31 data points from differential
ages. This strong dependence can be explained in connection with 4 H(z) data points with
high redshifts z > 2.

I. INTRODUCTION

The latest astronomical observations and their astrophysical interpretation [1] let cosmologists
conclude that our Universe demonstrates accelerated expansion and it contains ≃ 4% of visible
baryonic matter, about 26% of cold dark matter and ≃ 70% of dark energy (DE). The visible
and dark matter have properties of cold dust with close to zero pressure. However dark energy
has another equation of state with large negative pressure pDE close to its energy density −ρDE

with minus sign. Such a form of matter is considered as a source of the current cosmological
acceleration, it helps us to construct a model that can describe all available now observational data
and restrictions [1–4].

The simplest way to modify the Einstein theory of gravitation and to include dark energy with
the mentioned properties is to add the Λ term into the Einstein equations. In this case cosmological
solutions can demonstrate accelerated expansion. The resulting dynamical equations may be also
obtained, if we add the dark energy component with the equation of state pDE = −ρDE to the
usual visible matter and cold dark matter components. This cosmological model is called ΛCDM
(the Λ term with cold dark matter), it is now the most popular and usually considered as the
standard model in interpretation of observational data [1–3].

However, the ΛCDM model has some problems, in particular, vague nature of dark energy
and dark matter, the fine tuning problem for the small observed value of Λ and the coincidence
problem with surprising proximity of DE and matter contribution in total energy balance nowadays
[5, 6]. Due to these reasons cosmologists suggest a lot of alternative models (see reviews [5–7]),
in particular, scenarios with nontrivial equations of state [8–11], with interaction between dark
components [12–15], with F (R) Lagrangian [16–18], additional space dimensions [19] and many
others.

In particular, in this paper together with the ΛCDM model we consider the model with gener-
alized Chaplygin gas (GCG) [8–11]. In this model two dark fluids — dark energy and dark matter
are unified and represented as one dark component (generalized Chaplygin gas) with the following
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equation of state connecting energy density ρg and pressure pg:

pg = −B ρ−α
g . (1)

Here B and α are positive constants. This fluid generalizes the classical Chaplygin gas [8] with the
equation of state p = const/ρ.

For the models ΛCDM and GCG in this paper we calculate limitations on model parameters
determined from available recent observations including the Type Ia supernovae data (SN Ia) from
Union 2.1 satellite [4], observable parameters baryon acoustic oscillations (BAO) and we pay special
attention to different data sets of the Hubble parameter estimations H(z).

Type Ia supernovae are usually considered as standard candles in the Universe, because they
give possibility for each event to determine its epoch and the distance (luminosity distance) to this
object. Supernova is an exploding star with huge energy release, creating a shock wave on the
expanding shell [20]. They are observed in rather far galaxies because of their giant luminosity. All
supernovae are classified in correspondence with time dependence of the their brightness (the light
curve) and their spectrum. In particular, stars of Type I have hydrogen-deficient optical spectrum
and they belong to Type Ia subdivision, if they also have strong absorption near the silicon line
615 nm. For Type Ia supernovae astronomers can definitely determine their luminosity distances
from light curves. In this paper Sect. III we use the Union 2.1 compilation [4] with 580 SN Ia.

The observable effect of baryon acoustic oscillations (BAO) is generated by acoustic waves with
ions (baryons), which propagated in the relativistic plasma before the recombination epoch and
stopped after the drag era corresponding to zd ≃ 1059.3 [1]. This effect is observed as disturbances
(a bump) in the correlation function of the galaxy distribution at the sound horizon scale rs(zd)
[1, 21]. In Sect. III we analyze two types of observational manifestations the BAO effect from
Refs. [22] – [39], in particular, estimations of the Hubble parameter H(z) for different redshifts z
[28] – [39].

The Hubble parameter H is the logarithmic derivative of the scale factor a with respect to time
t, redshift z is also expressed via a

H =
ȧ

a
, z =

a0
a

− 1 =
1

a
− 1, (2)

if we choose here and below the value a nowadays: a0 = a(t0) = 1.
The Hubble parameter H(z) as the function of z may be estimated with different methods:

in addition to the mentioned BAO effects [28] – [39] (26 data points) we also have the H(z) data
measured from differential ages of galaxies [40] – [46] (31 data points are tabulated Sect. III).

In this paper we compare different approaches in choosing H(z) data, make calculations with
all 57 H(z) data points or only 31 points from differential ages and demonstrate for 2 popular
cosmological models ΛCDM and GCG that predictions of optimal model parameters strongly
depend on a considered Hubble parameter data set.

In Sect. II we make a brief review of the models ΛCDM and GCG and their dynamics, in
Sect. III describe observational data and in Sect. IV we demonstrate and analyze the results of our
calculations.

II. MODELS

For the ΛCDM model and the model with generalized Chaplygin gas (GCG) the dynamical
equations are deduced from the Einstein equations for the Robertson-Walker metric with the
curvature sign k

ds2 = −dt2 + a2(t)
[

(1− kr2)−1dr2 + r2dΩ
]
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and may be reduced to the system

3
ȧ2 + k

a2
= 8πGρ+ Λ, (3)

ρ̇ = −3
ȧ

a
(ρ+ p). (4)

Here the dot denotes the time derivative, ρ and p are correspondingly the energy density and
pressure of all matter, G is the Newtonian gravitational constant, the constant Λ equals zero for
the GCG model, the speed of light c = 1. Eq. (4) is the consequence of the continuity condition
∇µT

µ
ν = 0.

For both considered models we can neglect the fraction of relativistic matter (radiation and
neutrinos), because the radiation-matter ratio is rather small ρr/ρm ≃ 3 · 10−4 [1] for observable
values z ≤ 2.36.

In the ΛCDM model baryons and dark matter may be considered as one component with density
ρ = ρb+ρdm that behaves like dust because of zero pressure p = 0. In this case we use the solution
ρ/ρ0 = (a/a0)

−3 of Eq. (4) and rewrite the Friedmann equation (3) in the form

H2

H2
0

= Ωma−3 +ΩΛ +Ωka
−2 = Ωm(1 + z)3 +ΩΛ +Ωk(1 + z)2. (5)

We divided Eq. (3) by 3H2
0 , used Eq. (2) and the following notations for the present time fractions

of matter, dark energy (Λ term) and curvature correspondingly:

Ωm =
8πGρ(t0)

3H2
0

, ΩΛ =
Λ

3H2
0

, Ωk = − k

H2
0

. (6)

These values are connected by the equality

Ωm +ΩΛ +Ωk = 1, (7)

resulting from Eq. (5) if we fix t = t0. Thus, in description of the mentioned observational data
the ΛCDM model has 3 independent parameters: H0, Ωm and ΩΛ (or Ωk).

The GCG model includes two matter components: baryons and the generalized Chaplygin
gas, the common density is ρ = ρb + ρg. Unlike the ΛCDM in the GCG model one should
separately consider baryonic matter (it may include some part of cold dark matter) and introduce
the corresponding fraction

Ωb =
8πGρb(t0)

3H2
0

as an additional model parameter. However in Ref. [11] we demonstrated, that results of calcula-
tions very weakly depend on Ωb. So in this paper we consider the simplified model with one (gas)
component and suppose Ωb = 0 or ρ = ρg. In this case one can substitute the equation of state
(1) into Eq. (4), integrate it and obtain the following consequence of the Friedmann equation (3)
[9–11]:

H2

H2
0

= Ωka
−2 + (1− Ωk)

[

Bs + (1−Bs) a
−3(1+α)

]1/(1+α)
. (8)

Here the dimensionless parameter Bs = Bρ−1−α
0 is used instead of B. If we exclude the mentioned

above parameter Ωb, the GCG model will have 4 independent parameters: α, Bs, Ωk and H0.
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III. OBSERVATIONAL DATA

A. Supernovae Ia data

In Sect. I we briefly mentioned the observational data under investigation and here we describe
details. For Type Ia Supernovae (SN Ia) we use NSN = 580 data points from the table [4] after the
Union 2.1 satellite investigation. This compilation provides observed (estimated) values of distance
moduli µi = µobs

i for redshifts zi in the interval 0 < zi ≤ 1.41. We fit free parameters of our models,
when compare µobs

i with theoretical values µth(zi) of the distance moduli, which are logarithms

µth
i = µ(DL) = 5 log10 (DL/10pc)

of the luminosity distance [1, 5]:

DL(z) =
c (1 + z)

H0
Sk

(

H0

z
∫

0

dz̃

H(z̃)

)

, Sk(x) =











sinh (x
√
Ωk)/

√
Ωk, Ωk > 0,

x, Ωk = 0,
sin (x

√

|Ωk|)/
√

|Ωk|, Ωk < 0.
(9)

For a cosmological model with theoretical value H(z) (5) or (8) depending on model parame-
ters p1, p2, . . . we calculate the distance DL(z) and the corresponding χ2 function, that measures
differences between the SN Ia observational data and predictions of a model:

χ2
SN (p1, p2, . . .) = min

H0

NSN
∑

i,j=1

∆µi(C
−1
SN )ij∆µj, (10)

where ∆µi = µth(zi, p1, . . .)− µobs
i , CSN is the 580 × 580 covariance matrix [4]. For the Union 2.1

data [4] the standard marginalization over the nuisance parameter H0 is required [11], it is made
as the minimum over H0 in the expression (10).

B. BAO data

For baryon acoustic oscillations (BAO) we take into account the values dz(zi) [21]

dz(z) =
rs(zd)

DV (z)
, DV (z) =

[

czD2
L(z)

(1 + z)2H(z)

]1/3

. (11)

They were extracted for redshifts (redshift ranges) z = zi from a peak in the correlation function
of the galaxy distribution at the comoving sound horizon scale rs(zd). The value zd corresponds to
decoupling of photons, for the sound horizon scale rs(zd) here we use the following fitting formula
[11]

rs(zd) =
(rd · h)fid

h
, (rd · h)fid = 104.57 Mpc, h =

H0

100 km/(s ·Mpc)
, (12)

providing true h dependence of rd. The value (rd · h)fid = 104.57± 1.44 Mpc is the best fit for the
ΛCDM model [11].

In our calculations we use NBAO = 26 BAO data points for dz(z) (11) from Refs. [22] – [33],
tabulated here in Table I. We add 9 new points from Ref. [33] to 17 ones, which were used earlier
in Refs. [10, 11, 14, 15, 18]. We use the covariance matrix Cd for correlated data from Refs. [22, 25]
described in detail in Ref. [11]. So the χ2 function for the value (11) yields

χ2
BAO(p1, p2, . . .) = ∆d · C−1

d (∆d)T , ∆di = dobsz (zi)− dthz (zi). (13)
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TABLE I: Values dz(z) = rs(zd)/DV (z) (11) with errors and references

z dz(z) σd Refs z dz(z) σd Refs

0.106 0.336 0.015 [24] 0.44 0.0916 0.0071 [25]

0.15 0.2232 0.0084 [27] 0.44 0.0874 0.0010 [33]

0.20 0.1905 0.0061 [22] 0.48 0.0816 0.0009 [33]

0.275 0.1390 0.0037 [22] 0.52 0.0786 0.0009 [33]

0.278 0.1394 0.0049 [23] 0.56 0.0741 0.0008 [33]

0.31 0.1222 0.0021 [33] 0.57 0.0739 0.0043 [29]

0.314 0.1239 0.0033 [25] 0.57 0.0726 0.0014 [32]

0.32 0.1181 0.0026 [32] 0.59 0.0711 0.0010 [33]

0.35 0.1097 0.0036 [22] 0.60 0.0726 0.0034 [25]

0.35 0.1126 0.0022 [26] 0.64 0.0675 0.0011 [33]

0.35 0.1161 0.0146 [28] 0.73 0.0592 0.0032 [25]

0.36 0.1053 0.0018 [33] 2.34 0.0320 0.0021 [31]

0.40 0.0949 0.0014 [33] 2.36 0.0329 0.0017 [30]

Unlike Refs. [11, 14, 15, 18] we do not use in this paper the observational value [21]

A(z) =
H0

√
Ωm

cz
DV (z),

because it essentially depends on Ωm, however Ωm is not the model parameter for the GCG model
(see Table III).

C. H(z) data

The Hubble parameter values H at certain redshifts z can be measured with two methods: (1)
extraction H(z) from line-of-sight BAO data [28] – [39] including analysis of correlation functions
of luminous red galaxies [28, 37], and (2) H(z) estimations from differential ages ∆t of galaxies
(DA method) [40] – [46] via Eq. (2) and the following relation:

H(z) =
ȧ

a
= − 1

1 + z

dz

dt
≃ − 1

1 + z

∆z

∆t
.

The maximal set with NH = 57 recent estimations of H(z) is shown in Fig. 1 and in Table II
below, it includes 31 data points measured with DA method (the left side) and 26 data points (the
right side), obtained with BAO and other methods. The χ2 function for the H(z) data is

χ2
H(p1, p2, . . .) =

NH
∑

i=1

[Hi −Hth(zi, p1, p2, . . .)]
2

σ2
H,i

. (14)

In papers [14, 18] we used only NH = 30 H(z) data points estimated from DA method to avoid
additional correlation with the BAO data from Table I. This consideration should be taken into
account in the present paper: in the next section we calculate separately the χ2 function with
NH = 31 DA data points from the left column of Table II (30 points from Refs. [14, 18] and the
recent point from Ref. [46]) and compare these results with the full H(z) data from Table II with
NH = 57 data points.

In Fig. 1 the H(z) data points from Table II estimated with DA and BAO methods are shown
as correspondingly red stars and cyan diamonds. The lines demonstrate the best fitted H(z)
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FIG. 1: H(z) data from Table II, stars and diamonds denote data points correspondingly from DA and
BAO methods. The lines are the best fitted for the ΛCDM and GCG models with 57 and 31 H(z) data
points.

dependence with the optimal parameters from Table III for the ΛCDM and GCG models with 57
and 31 H(z) data points.

IV. RESULTS OF ANALYSIS

For any cosmological model we investigate the space of its model parameters p1, p2, . . . (they
are Ωm, ΩΛ, H0 for the ΛCDM and α, Bs, Ωk, H0 for the GCG model) and search the optimal
values of these parameters, which yield the most successful description of the observational data
from Sect. III. To achieve this purpose, for any set of parameters p1, p2, . . . we use the dependence
H(z) (5) or (8), calculate the integral in Eq. (9), the distances DL = Dth

L (z) and Dth
V (z) (11), the

values µth, dthz , the χ2 functions χ2
SN (10), χ2

BAO (13), χ2
H (14) and the summarized function

χ2
tot = χ2

SN + χ2
BAO + χ2

H . (15)

We search minima of the functions χ2
H and χ2

tot in the parameter spaces of a model in the two
mentioned variants of the H(z) data sets: with all NH = 57 data points from Table II and with
only NH = 31 data points from Refs. [40] – [46], estimated via the DA method.

For both considered models we calculate two-parameter distributions of minχ2
tot in planes of
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TABLE II: Hubble parameter values H(z) with errors σH from DA and BAO methods.

DA method BAO method

z H(z) σH Refs z H(z) σH Refs

0.070 69 19.6 [42] 0.24 79.69 2.99 [34]

0.090 69 12 [40] 0.30 81.7 6.22 [37]

0.120 68.6 26.2 [42] 0.31 78.18 4.74 [33]

0.170 83 8 [40] 0.34 83.8 3.66 [34]

0.1791 75 4 [43] 0.35 82.7 9.1 [28]

0.1993 75 5 [43] 0.36 79.94 3.38 [33]

0.200 72.9 29.6 [42] 0.38 81.5 1.9 [38]

0.270 77 14 [40] 0.40 82.04 2.03 [33]

0.280 88.8 36.6 [42] 0.43 86.45 3.97 [34]

0.3519 83 14 [43] 0.44 82.6 7.8 [35]

0.3802 83 13.5 [45] 0.44 84.81 1.83 [33]

0.400 95 17 [40] 0.48 87.79 2.03 [33]

0.4004 77 10.2 [45] 0.51 90.4 1.9 [38]

0.4247 87.1 11.2 [45] 0.52 94.35 2.64 [33]

0.4497 92.8 12.9 [45] 0.56 93.34 2.3 [33]

0.470 89 34 [46] 0.57 87.6 7.8 [29]

0.4783 80.9 9 [45] 0.57 96.8 3.4 [32]

0.480 97 62 [41] 0.59 98.48 3.18 [33]

0.593 104 13 [43] 0.60 87.9 6.1 [35]

0.6797 92 8 [43] 0.61 97.3 2.1 [38]

0.7812 105 12 [43] 0.64 98.82 2.98 [33]

0.8754 125 17 [43] 0.73 97.3 7.0 [35]

0.880 90 40 [41] 2.30 224 8.6 [36]

0.900 117 23 [40] 2.33 224 8 [39]

1.037 154 20 [43] 2.34 222 8.5 [31]

1.300 168 17 [40] 2.36 226 9.3 [30]

1.363 160 33.6 [44]

1.430 177 18 [40]

1.530 140 14 [40]

1.750 202 40 [40]

1.965 186.5 50.4 [44]

two model parameters, for example,

mχ
tot(p1, p2) = min

p3,...
χ2
tot(p1, p2, p3, . . .). (16)

We use this functions to determine one-parameter distributions and the corresponding likelihood
functions:

mχ
tot(pj) = min

other pk
χ2
tot(p1, . . .), Ltot(pj) = exp

[

− mχ
tot(pj)−mabs

2

]

. (17)

Here mabs is the absolute minimum of χ2
tot.
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The results of these calculations for the ΛCDM model with three independent parameters Ωm,
ΩΛ and H0 are presented in Figs. 2, 3 and in Table III. In the top-left panel of Fig. 2 we draw the
contour plots at 1σ (68.27%), 2σ (95.45%) and 3σ (99.73%) confidence level for the two-parameter
distributions (16) of χ2

tot in the (Ωm,ΩΛ) plane. The green filled contours describe themχ
tot(Ωm,ΩΛ)

function for all 57 H(z) data points, the magenta contours present the case with 31 DA H(z) data
points. Here the function (16) is

mχ
tot(Ωm,ΩΛ) = min

H0

χ2
tot(Ωm,ΩΛ,H0). (18)

Ω
m

Ω
Λ
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FIG. 2: The ΛCDM model: 1σ, 2σ and 3σ contour plots for two-parameter distributions mχ
tot(Ωm,ΩΛ)

are drawn in (Ωm,ΩΛ) plane for 57 and 31 H(z) data points in comparison with contours for min
H0

χ2
H (the

top-right panel). The corresponding one-parameter distributions mχ
tot(Ωm) and mχ

H(Ωm) are in the bottom
panels.

In the top-right panel of Fig. 2 we compare the mentioned contours for χ2
tot (with the same

colors) and the similar contours for the function χ2
H (14), more correctly,

mχ
H(Ωm,ΩΛ) = min

H0

χ2
H(Ωm,ΩΛ,H0).

This distribution includes only H(z) data.

The green circles and magenta stars in Fig. 2 denote the minimum points of mχ
tot(Ωm,ΩΛ) (and,

naturally, for χ2
tot) correspondingly for 57 and 31 H(z) data points. Their coordinates (the optimal

values of parameters) are tabulated in Table III. In the same way, the minimum points for χ2
H are

shown in the top-right panel as the deep green square and brown hexagram.
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In the bottom panels of Fig. 2 we compare the one-parameter distributions (17) mχ
tot(Ωm) and

mχ
H(Ωm) = min

ΩΛ

mχ
H(Ωm,ΩΛ). These distributions and the corresponding likelihood functions (17)

determine 1σ estimates in Table III (for χ2
tot).

In Fig. 2 we see the interesting phenomenon: the optimal values of parameters Ωm, ΩΛ (and
positions of minimum points for χ2) are essentially different for the two considered cases with 57
and 31H(z) data points. This divergence takes place for χ2

tot (the left panels in Fig. 2), for example,
these estimations for Ωm are correspondingly Ωm = 0.282 ± 0.021 and Ωm = 0.349 ± 0.041 (see
Table III): the last value 0.349 is beyond 2σ confidence level for the NH = 57 case. However for
χ2
H this divergence is stronger, the correspondent estimations are Ωm = 0.227+0.036

−0.041 (for NH = 57)
and Ωm = 0.359+0.197

−0.232 (for NH = 31). This is natural, because the summands χ2
SN + χ2

BAO in χ2
tot

moderate this effect.

TABLE III: Optimal values and 1σ estimates of model parameters

Model minχ2
tot AIC H0 Ωk other parameters

ΛCDM 610.31 616.31 71.35+0.63
−0.62 −0.085± 0.048 Ωm = 0.282± 0.021,

57 H(z) ΩΛ = 0.803± 0.028

ΛCDM 588.96 594.96 71.77+1.70
−1.69 −0.224+0.085

−0.084 Ωm = 0.349± 0.041,

31 H(z) ΩΛ = 0.875± 0.045

GCG 609.94 617.94 71.68+0.82
−0.83 −0.192+0.188

−0.170 α = −0.124+0.235
−0.138,

57 H(z) Bs = 0.705+0.065
−0.044

GCG 587.93 595.93 70.46+2.16
−2.51 +0.019+0.541

−0.255 α = 0.647+3.25
−0.64,

31 H(z) Bs = 0.826+0.284
−0.111

Below we concentrate on the more relevant summarized function χ2
tot. In Fig. 3 we present other

two- and one-parameter distributions of χ2
tot and the likelihood functions for the ΛCDM model. In

particular, in the top-right panel the contour plots for mχ
tot(Ωk,H0) = min

Ωm

χ2
tot are shown for the

cases NH = 57 and NH = 31 in the same notations. In these calculation we consider the curvature
fraction Ωk as an independent parameter (together with Ωm,H0), the fraction ΩΛ is expressed via
Eq. (7): ΩΛ = 1− Ωm − Ωk.

The two-parameter distributions (18) mχ
tot(Ωm,ΩΛ) for NH = 57 and 31 in the top-right panel

of Figs. 2, 3 let us calculate the one-parameter distributions mχ
tot(Ωm), mχ

tot(ΩΛ) and the likelihood
functions (17) Ltot(Ωm), Ltot(ΩΛ) shown in the middle and bottom panels of Fig. 3. The functions
Ltot(H0) are deduces from the two-parameter distributions in the (Ωk,H0) plane.

The best fitted values of minχ2
tot and the model parameters Ωm, ΩΛ, Ωk, H0 for the ΛCDM

model are presented in Table III for the cases NH = 57 and NH = 31. The 1σ errors are calculated
from the correspondent likelihood functions (17) Ltot(pi). We should emphasize, that the number
Np of model parameters is essential, when we comrade different models. So we also use the Akaike
information criterion [11, 47]

AIC = minχ2
tot + 2Np. (19)

Here Np = 3 for the ΛCDM model.
The similar estimations for the ΛCDM model were made in many papers, in particular, in

Refs. [1–3, 11, 47–49] for describing the Type Ia supernovae, H(z), BAO and other data in various
combinations. One can observe the following effect (connected with the described above): the
estimations of Ωm, ΩΛ, Ωk and H0 in different papers essentially depend on a chosen H(z) data
set. For example, the authors of Refs. [49] used the χ2

H function with NH = 41 data points from
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FIG. 3: The ΛCDM model with 57 and 31 H(z) data points: contour plots in 2 planes, one-parameter
distributions and likelihood functions.

both DA and BAO methods and calculated Ωm = 0.237± 0.051, ΩΛ = 0.66± 0.20. However, when
they excluded 3 data points [30, 31, 36] with z ≥ 2.3, they obtained the enhanced values for both
parameters Ωm = 0.40+0.18

−0.14, ΩΛ = 0.92+0.34
−0.23 (compare with our results for χ2

H in Fig. 2).

If we compare our results for the ΛCDM model with the latest Planck data [1] (Ωm = 0.308 ±
0.012, ΩΛ = 0.692 ± 0.012, Ωk = −0.005+0.016

−0.017, H0 = 67.8 ± 0.9 km c−1Mpc−1), we will find some
tension for ΩΛ, Omegak in the case NH = 31 and for H0 in both cases because of too low estimation
of H0 in Ref. [1].

The influence of a chosen H(z) data set takes place not only for the ΛCDM model. One can see
in Fig. 4 and in Table III, that for the GCG model this influence is even more strong. In the top
panels we demonstrate the contour plots for two-parameter distributions (16) of χ2

tot in the (α,Bs)
and (Ωk, Bs) planes for the cases NH = 57 (blue filled contours) and NH = 31 (red contours). In
particular, the two-parameter distributions (16) in the top-left panel are

mχ
tot(α,Bs) = min

Ωk,H0

χ2
tot(α,Bs,Ωk,H0).
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The circles and stars show the points of minima for χ2
tot. The similar two-parameter contour plots

for the GCG model in the (Ωk,H0) plane are drawn in Fig. 5.

The one-parameter distributions mχ
tot(α), m

χ
tot(Bs), m

χ
tot(Ωk) and the corresponding likelihood

functions (17) Ltot(pi) are shown in the middle and bottom panels of Fig. 4.

Fig. 4 and Table III demonstrate, that for the GCG model the best fitted values of α, Bs, Ωk

strongly depend on a Hubble parameter data: NH = 57 (all data points) or NH = 31 (only from
DA method). In particular, the best fitted values α ≃ −0.124, Ωk ≃ −0.192 for NH = 57 change
their signs and become α ≃ +0.647, Ωk ≃ +0.019, if NH = 31.

In Fig. 5 we compare the ΛCDM and GCG models in the plane (Ωk,H0) of their common
parameters. For both models we draw the one-parameter distributions mχ

tot(Ωk), m
χ
tot(H0) (they

help us to compare the best results minχtot for these models) and the likelihood functions Ltot(Ωk),
Ltot(H0).

In the top-left panel of Fig. 5 the filled contours describe the GCG model with NH = 57,
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panel). The corresponding one-parameter distributions are in other panels. Notations correspond to the
previous figures.

other contours differ in their color. The points of minima are marked here as the circle (GCG,
NH = 57), the pentagram (GCG, NH = 31), the square (ΛCDM, NH = 57) and the hexagrams
(ΛCDM, NH = 31) of the corresponding color.

Fig. 5 is useful, when we want to compare predictions the ΛCDM and GCG models in the
considered cases NH = 57 and NH = 31. The plots Ltot(Ωk) and Ltot(H0) show differences of the
best fitted values, the plots mχ

tot(Ωk) and mχ
tot(H0) describe effectiveness of these models. Mere

detailed information is tabulated in Table III.

V. CONCLUSION

In this paper we describe the observational data for Type Ia supernovae [4], BAO (Table I) and
two data sets of the Hubble parameter data H(z) (all NH = 57 data points from Table II and
only 31 data points from differential ages) with the ΛCDM model and the model with generalized
Chaplygin gas (GCG).

The results are demonstrated in Table III: for all models and variants of NH we calculated the
minimal values of the function χ2

tot (15), the results of Akaike information criterion (19) and the
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best fitted values of model parameters with 1σ errors. For the GCG model we achieve the best
minimal values of minχ2

tot, however the Akaike criterion gives advantage to the ΛCDM model,
because it has the small number Np = 3 of model parameters (degrees of freedom) in comparison
with with Np = 4 for GCG.

But the most striking result of our calculations for both models is the large difference between
the best fitted values of model parameters in the cases with NH = 57 H(z) data points from
Table II and NH = 31 data points, obtained with DA method (the left hand side of Table II). For
the case NH = 57 these results are close to the estimations for these models in Ref. [11], because
in that paper we used H(z) data points from both DA and BAO methods (though there were
NH = 38 points).

This essential divergence between the predictions of the variants with all NH = 57 and NH = 31
DA data points is seen visually in Fig. 1. It may be explained and connected with 4 H(z) data
points [30, 31, 36, 39] with high redshifts z ≥ 2.3. These data points, obtained with BAO method
(see the right hand side of Table II) have small errors σH and strongly influence on a model
predictions, when we take these points into account (in the case NH = 57). Otherwise, when we
include only NH = 31 DA data points, this effect disappears.
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