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We combine model-independent reconstructions of the expansion history from the latest Pan-
theon supernovae distance modulus compilation and measurements from baryon acoustic oscillation
to test some important aspects of the concordance model of cosmology namely the FLRW metric
and flatness of spatial curvature. We then use the reconstructed expansion histories to fit growth
measurement from redshift-space distortion and obtain constraints on (Ωm, γ, σ8) in a model inde-
pendent manner. Our results show consistency with a spatially flat FLRW Universe with general
relativity to govern the perturbation in the structure formation and the cosmological constant as
dark energy. However, we can also see some hints of tension among different observations within
the context of the concordance model related to high redshift observations (z > 1) of the expansion
history. This supports earlier findings of [1, 2] and highlights the importance of precise measurement
of expansion history and growth of structure at high redshifts.

I. INTRODUCTION

The concordance model of cosmology is based on Ein-
stein’s general theory of relativity (GR), which enabled us
to build a theory of the Universe that is testable and can
be falsified. The concordance flat ΛCDM model, which
is based on GR and the assumptions of isotropy and ho-
mogeneity of the Universe, has been very successful at
explaining various astronomical observations from a very
early epoch (at least, from the Big-Bang nucleosynthe-
sis time). This predictive model explains the dynamics
of the Universe with only 6 free parameters. Ωb and
Ωdm (baryonic and dark matter densities) are the mat-
ter parameters. Assuming a flat universe and cosmolog-
ical constant being responsible for late time acceleration
of the Universe, we can derive ΩΛ = 1 − (Ωb + Ωdm).
τ representing the epoch of reionization, H0 the Hub-
ble parameter, ns the spectral index of the primordial
spectrum and As the overall amplitude of the primordial
spectrum are the other 4 parameters of this model. Out
of these parameters, the first four dictate the dynamic
of the Universe and the other two represent the initial
condition through the primordial fluctuations given by

PR(k) = As

(
k
k∗

)ns−1

, where k∗ is the pivot point. Hav-

ing the form of the primordial fluctuations and the ex-
pansion history of the Universe one can determine the
growth of structure for this model on linear scales fol-
lowing the linearised perturbation equation and also run
N -body simulations to study the small scales and non-
linear regime. Despite the simplicity of the model, most
astronomical observations are in great agreement with
the concordance model and so far there has not been any
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strong observational evidence against it [e.g., 3–5]. In this
paper we test some important aspects of the concordance
model of cosmology in light of the most recent cosmo-
logical observations in a model-independent manner. At
the background level, we derive the H0rd parameter, test
dark energy as the cosmological constant Λ, the FLRW
metric and the flatness of the Universe. At the pertur-
bation level, we then use model independent reconstruc-
tion of the expansion history from supernovae data to
fit growth of structure data and put model independent
constraints on some key cosmological parameters, namely
Ωm, γ, and σ8. In § II we describe the background expan-
sion and our tests on Λ dark energy, FLRW metric and
flatness of the spatial curvature. Analysis on the growth
of structure and testing general theory of relativity are
presented in § III, and our conclusions are drawn in § IV.

II. BACKGROUND EXPANSION: TESTING Λ,
THE FLRW METRIC, AND THE CURVATURE

At the background level, it is possible to test dark en-
ergy as Λ, the FLRW metric, and the curvature of the
Universe. In a FLRW universe with a dark energy com-
ponent of equation of state w(z), the luminosity distance
can be written for any curvature Ωk

dL(z) =
c

H0
(1 + z)D(z), (1)

where

D(z) =
1√
−Ωk

sin

(√
−Ωk

∫ z

0

dx

h(x)

)
(2)
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is the dimensionless comoving distance, and

h2(z) =

(
H(z)

H0

)2

= Ωm(1 + z)3 + Ωk(1 + z)2

+ (1− Ωm − Ωk) exp

(
3

∫ z

0

1 + w(x)

1 + x
dx

)
(3)

is the expansion history. Having different observables of
the cosmic distances and expansion history one can then
introduce novel approaches to examine the FLRW metric,
flatness of the Universe and Λ dark energy in a model-
dependent [e.g., 6] or independent way [2, 7–12]. Note
that one can also test the metric and the curvature us-
ing gravitational lensing [e.g. 13, 14] or cosmic parallaxes
[15].

A. Model-independent reconstruction of the
expansion history from the Pantheon compilation

In order to reconstruct the D(z), D′(z) and h(z) at any
given redshift, we apply the iterative smoothing method
[10, 16–18] to the the latest compilation of supernovae
distance modulus [Pantheon, 5]. Pantheon is the latest
compilation of 1048 SNIa, extending previous compila-
tions with confirmed SNIa from the Pan-STARRS1 sur-
vey.

The method of smoothing is a fully model indepen-
dent approach to reconstruct the D(z) relation directly
from the supernova data, without assuming any partic-
ular model or a parametric form. The only parameter
used in the smoothing method is the smoothing width
∆, which is constrained only by the quality and quan-
tity of the data. The smoothing method is an iterative
procedure with each iteration providing a better fit to
the data. It has been discussed and shown that the fi-
nal reconstructed results are independent of the assumed
initial guess [16–18]. In our analysis we start the smooth-
ing procedure from various arbitrary choices of the ini-
tial guess models and while their final results converge to
the same reconstruction, we select within the process, a
non-exhaustive samples of the reconstructions that have
a χ2 better than the best fit ΛCDM model. In [18] the
method of smoothing was modified to incorporate the
data uncertainties and hence making the approach error-
sensitive. However, the formalism in [18] could take in
to account only the diagonal terms of the error matrix.
While the quality of the data is improving continuously
and non-diagonal terms of the covariance matrices can
play an important role in likelihood estimations, in this
work we modify the smoothing method further by in-
corporating the whole covariance matrix of the data in
to the smoothing procedure. While this improvement
might look like a minor modification, it is in fact a very
important step to make this model independent recon-
struction approach complete and comprehensive to deal
with highly correlated data.

In order to take into account the non-diagonal terms
of the covariance matrix, we modified the method in the
following way. Starting with some initial guess µ̂0, we
iteratively calculate the reconstructed µ̂n+1 at iteration
n+ 1:

µ̂n+1(z) = µ̂n(z) +
δµT

n ·C−1
SN ·W (z)

1T ·C−1
SN ·W (z)

, (4)

where the weight W and residual δµn are defined as

W i(z) = exp

− ln2
(

1+z
1+zi

)
2∆2

 (5)

δµn|i = µi − µ̂n(zi), (6)

1
T = (1, . . . , 1), (7)

and CSN is the covariance matrix of the data (in our case,
Pantheon data). In case of uncorrelated data (Cij =
δijσ

2
i )), we recover the formula introduced in [18] used

recently in [10].

The χ2 of the reconstruction µ̂n(z) is then defined as

χ2
n = δµT

n ·C−1
SN · δµn, (8)

and in this work we only consider reconstructions with
χ2 < χ2

ΛCDM best-fit.

The result of the smoothing procedure is thus

H0d̂Ln(z) = 10(µ̂n−5)/5. Under the assumption of a flat
Universe, we can obtain hn(z) = 1/(dDn(z)/dz).

We should clarify here that our selected reconstruc-
tions of the expansion history from the iterative smooth-
ing method are not posterior samples within a Bayesian
framework. We in fact obtain a non-exhaustive sample
of plausible expansion histories, directly reconstructed by
supernova data and with no model assumption, which all
give a better χ2 to the Pantheon data than the best-
fit ΛCDM model. This enables us to explore regions
of the physical space of the expansion history beyond
the flexibility of the concordance model (or other para-
metric functional forms) that can fit the data reasonably
well. Note that the formalism given in this paper for the
method of smoothing is self-contained and has all needed
information. Equations (4) to (8) contain the full formal-
ism of the iterative smoothing method including the full
covariance matrix of the data, which is now simply writ-
ten in a matricial way (which is more compact). However,
for more details and better understanding of the method
one can follow the given references.
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B. BAO measurements of cosmic distances and
expansion history

The radial mode of the BAO measures H(z)rd, while
the transverse modes provide dA(z)/rd, where

rd =
c√
3

∫ 1/(1+zdrag)

0

da

a2H(a)
√

1 + 3Ωb

4Ωr
a

(9)

is the sound horizon at the drag epoch zdrag. We
combined the Baryon Oscillation Spectroscopic Survey
(BOSS) DR12 consensus values [4] and the extended-
BOSS (eBOSS) DR14Q measurements [19]. We note
that both BOSS DR12 and eBOSS DR14Q pro-
vide H(z)rd/rd,fid and dA(z)rd,fid/rd with rd,fid =
147.78 Mpc. We also include the Dark Energy Survey
DR1 (DES DR1) measurement of dA/rd at z = 0.81 [20].
We use these BAO data along with our reconstructions
of the expansion history from supernova data as two in-
dependent sets of observations to test some key aspects
of the concordance model.

C. Testing Λ Dark Energy

The solid black lines in Fig. 1 show the different recon-
structedD(z), h(z) = 1/D′(z) and Om(z) from Pantheon
supernovae compilation where Om(z) is defined as [8]:

Om(z) =
h2 − 1

(1 + z)3 − 1
(10)

We also show in Fig. 1 the BAO data points for
these quantities. Since the BAO measure H(z)rd and
dA(z)/rd, to have a good sense of comparison within the
context of the concordance model, we normalize them
by H0rd from Planck 2015 (TTTEEE+LowP+Lensing)
best fit ΛCDM model, and show on the top panel
D(z) = (1 + z)H0rddA(z)/(crd), in the middle panel
h(z) = H(z)rd/H0rd and the corresponding Om(z) on
the bottom panel. The magenta solid line shows the cor-
responding D(z), h(z) and Om(z) for the best-fit Planck
2015 Flat-ΛCDM model.

While the reconstructed expansion history h(z) from
SNIa are fully consistent with the BAO data points at
low redshifts (z ≤ 1.2), some tension seems to arise at
higher redshifts (z ≥ 1.5) where the reconstructed ex-
pansion histories from the BAO data suggest lower h(z)
with respect to the best fit ΛCDM model from Planck.
While the errorbars are still quite large, the BAO data
seem to follow the same trend in suggesting lower values
of h(z) (with respect to the best fit ΛCDM model from
Planck) at high redshifts. For illustration purpose we also
show the measurement of h(z = 2.33) from the Lyman-α
forest [21] which seems to agree with other BAO data
points suggesting lower h(z) with respect to Planck best
fit ΛCDM model, although we did not include this data
point in our analysis since the supernovae data do not

FIG. 1: BAO data points normalized by H0rd from [3]
best fit ΛCDM model. The solid lines are the

reconstructed expansion histories from the Pantheon
data which are fully model independent, and the purple

line is the prediction from [3] for the best-fit
concordance ΛCDM model. They are color-coded by
their ∆χ2 with respect to the best-fit ΛCDM model,

with earlier iterations having less negative δχ2 (yellow),
and later iterations more negative ∆χ2 (dark blue).

reach such a high redshift. This data point is consistent
with the previous result from SDSS III [22]. This ten-
sion is also visible clearly looking at the Om diagnostic
in bottom plot of Fig. 1, which is also consistent with the
finding of [1]. If dark energy is a cosmological constant
(and if the Universe is flat), the Om diagnostic should be
constant in redshift. Therefore, having different values
from different observations suggests some tension among
the data within the framework of the concordance model.

Meanwhile, the comoving distances D(z) from BAO
and SNIa are fully consistent together and with the best-
fit Planck cosmology. Combining these results of the co-
moving distances and expansion histories may show some
inconsistency with flatness as we will see later in this
work.

D. Estimating H0rd

Ref. [10] estimated H0rd in a model-independent way
by combining BAO measurements and reconstructions of
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the expansion history from supernovae. H0rd is an im-
portant parameter combining physics of the early (sound
horizon at the drag epoch) and late Universe (expansion
rate). For each reconstruction n, we can calculate H0rd

in two different ways

H0rd|dA,n =
c

1 + z
Dn(z)

rd

dA(z)
(11a)

H0rd|H,n =
H(z)rd

hn(z)
, (11b)

and their associated errors

σH0rd |dA,n =
c

1 + z
Dn(z)

σdA/rd(z)

(dA(z)/rd)2
(12a)

σH0rd |H,n =
σHrd(z)

hn(z)
, (12b)

where, assuming a flat-FLRW universe, h(z) = 1/D′(z).
Fig. 2 shows our estimation of H0rd at the differ-

ent BAO data points for the two estimations. In green
is shown the ΛCDM value from Planck 2015 [3]. We
can then define two error-bars. The first one is the
error due to the supernova. At fixed redshift, we de-
fine 〈H0rd〉X as the median over all reconstructions for
method X ∈ {dA, H}. We can then define the upper
and lower limit as the minimal and maximal values of
H0rd|X,n. This error-bar is shown as a dashed line in
Fig. 2. The second error is due to the uncertainty on
the BAO (equations (12a) and (12b)), and is the uncer-
tainty of the central value for a given reconstruction n.
For each reconstruction n and method X, we have an
error σH0rd |X,n. They are of the same order for each
reconstruction, so we define the final BAO error as the
maximum value over all reconstructions. This error-bar
is shown as a solid error-bar in Fig. 2.

For the first method (in orange), the measurements
of H0rd from combination of supernova and SDSS BAO
data are fully consistent with Planck. The DES data
point, also using the transverse BAO mode, is an inde-
pendent confirmation at intermediate redshift. However,
for the second method, while at low redshift, the mea-
surements are consistent with Planck, the eBOSS data
points are systematically lower than the Planck best-fit
at z ≥ 1.2 while the errorbars become very large at this
range. This can be understood by the following remarks.

The first method yields very consistent results thanks
to the use of the transverse BAO mode, which has
smaller error-bars, coupled with direct reconstructions
D(z) which do not use derivative.

The second method however, uses the line-of-sight
mode of the BAO, together with h(z) from supernovae
data which is a derivative. Since the Pantheon data be-
come scarce at z ≥ 1, the estimation of h(z) becomes less
precise at this range having large error-bars. Combina-
tion of these two results to large uncertainties for H0rd

from the second method. On the other hand, it can be
seen from Fig. 1 that while h(z) from SNIa are higher
than the best-fit Planck ΛCDM model, h(z) from the

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
z

4000

6000

8000

10000

12000

H
0r

d (
km

/s
)

Alam et al. (2016)
Zhao et al. (2018)
DES Collaboration (2017)
Planck 2015

H(z)rd/h(z)
c/(1 + z) (z)rd/dA(z)

Error BAO
Error SN

FIG. 2: Model-independent measurement of H0rd

estimated at the different BAO data points. The dotted
error-bars show the range of possible central values from

different reconstructions (SN error), while the solid
error bars show the uncertainty on the central value

(BAO error).

BAO (scaled with best fit Planck ΛCDM model) are actu-
ally lower. This explains the lower values of H(z)rd/h(z)
at the eBOSS redshifts with respect to the other mea-
surements.

We can then estimate, for each reconstruction n and
method X ∈ {dA, H}, the weighted average

〈H0rd〉X,n =
1
T ·C−1

n ·H0rd|X,n
1T ·C−1

n · 1
, (13)

where H0rd|X,n is a vector constituted of estimations
of H0rd at different redshifts for iteration n, and Cn is
the associated covariance matrix (due to the correlation
in the BAO data). We report our results in Table I.
The Planck 2015 value of H0rd for the ΛCDM model is
(9944.0± 127.4) km s−1 Mpc−1. We should note an im-
portant interpretation of this result. While all our re-
constructions of the expansion history from supernovae
data have better χ2 with respect to the best fit ΛCDM
model, our large uncertainties on H0rd indicates that
tight constraints on this quantity from model dependent
approaches (such as assuming ΛCDM model) have limi-
tations in expressing the reality of the universe and esti-
mating its key parameters.

E. Test of the FLRW metric and the curvature

[10] reformulated the Ok diagnostic [7] by introducing
the Θ diagnostic so that it now only depends on the BAO
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TABLE I: Weighted average of H0rd from the H and
dA methods.

Method H0rd Error SN Error BAO

〈H0rd〉dA 10120.42 +33.79
−59.12 ±103.92

(km s−1)
〈H0rd〉H 9162.80 +875.06

−921.02 ±166.39
(km s−1)

0.4

0.6

0.8

1.0

Flat FLRW
Error BAO
Error SN

Alam et al. (2016)
Zhao et al. (2018)

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
z

1.0

0.5

0.0

0.5

k

FIG. 3: FLRW and curvature test: Θ(z) (top) and
Ok(z) (bottom). The dotted error-bars show the range
of possible central values from different reconstructions

(SN error), while the solid error bars show the
uncertainty on the central value (BAO error). For a

flat-FLRW Universe, Θ(z) ≡ 1 and Ok(z) ≡ Ωk.

and supernovae observables:

Ok(z) =
Θ2(z)− 1

D2(z)
(14a)

Θ(z) = h(z)D′(z) =
1 + z

c
H(z)rd

dA(z)

rd

D′(z)
D(z)

. (14b)

For a FLRW Universe, Ok(z) ≡ Ωk, and in case of flat-
ness, Ok(z) ≡ 0 and Θ(z) ≡ 1. We can then calculate for
each reconstruction n the associated Ok,n(z) and Θn(z).
We calculated the median of Ok and Θ over all recon-
structions, and defined the SN error as the minimal and
maximal values, and the BAO error as the maximal er-
ror over all reconstructions. Fig. 3 shows Θ(z) (top) and
Ok(z) (bottom). Both are consistent with a flat FLRW
metric up to z ' 1.2.

However, at high redshift, some deviation from flat-
ness can be seen. Again, this can be explained by the
previous remarks. In addition to the scarcity of the SN
data at z ≥ 1.5, which results in into poor constraints
on h(z), the BAO seem to show some internal tensions.
While dA(z)/rd are consistent with the Planck best-fit,
H(z)rd are lower than expected. However, the Θ and
Ok statistics assume a FLRW metric, where dA and H

are related to each other. Thus, discrepancy between dA

and H combined with the higher h values at high-redshift
(z ≥ 1) yields lower values for Θ and Ok. We should also
note that in the case of supernova data, the Malmquist
bias (if not treated carefully) can pull down the D(z) rela-
tion at high redshifts. This might explain the large swing
upward of h(z) and Om(z) (with respect to the best-fit
ΛCDM case) that we can see in Fig. 1, and consequently
the apparent deviation from flatness observed in Θ and
Ok. While it is certainly important to study further this
effect in the case of the Pantheon data, it is beyond the
scope of this paper.

III. GROWTH OF STRUCTURE VERSUS
EXPANSION: TESTING GR

At the perturbation level, the cosmological growth of
structure can also serve as a test of gravity [11, 23–34]. In
the linear regime, the growth of structure in GR follows

δ̈ + 2Hδ̇ − 4πGρ̄δ = 0, (15)

where δ = ρ/ρ̄− 1 is the density contrast with respect to
the mean density of the Universe ρ̄. The growth rate

f(a) =
dln δ

dln a
(16)

can be approximated for a wide range of cosmologies by
[35–37]

f(z) = Ωγm(z), (17)

where

Ωm(z) =
Ωm(1 + z)3

h2(z)
. (18)

In general relativity (GR), γ ' 0.55. fσ8 is thus a power-
ful probe of gravity. Observationally, redshift-space dis-
tortion enables to measure the combination [e.g. 24]

fσ8(z) ' σ8Ωγm(z) exp

(
−
∫ z

0

Ωγm(x)
dx

1 + x

)
, (19)

where σ8 = σ8(z = 0) is the rms fluctuation in 8h−1Mpc
spheres. Following this formalism, having model inde-
pendent reconstructions of the expansion history and
fσ8(z) data, one can obtain constraints on Ωm,γ, and
σ8 [38]. Note that we consider the estimated fσ8 data
from BAO surveys as an independent and uncorrelated
measurements with respect to the supernova data that
we used to reconstruct the expansion history.

Note, however, that one should keep in mind that
Eq. (17) is an approximate fit only. In particular, γ may
not be exactly constant for quintessence—dark energy
modelled by a scalar field with some potential minimally
coupled to gravity [39]. Still both for ΛCDM and for

quintessence-CDM this fit is good since dγ
dz is small as far

as Ωm is not too small, see also [40]. For modified gravity
theories like f(R) gravity, the situation can be different
[41, 42].
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A. Cosmological constraints on Ωm, γ, σ8

Following [38], we combined the Pantheon compilation
with the latest measurements of fσ8: 2dFGRS [24], Wig-
gleZ [43], 6dFGRS [44], VIPERS [45], the SDSS Main
galaxy sample [46], 2MTF [47], BOSS DR12 [48], Fast-
Sound [49], and eBOSS DR14Q [19]. In this section, we
assume a flat Universe, therefore

h(z) =
1

D′(z)
. (20)

It is worth noting that these measurements, coming
from different surveys, were obtained assuming different
fiducial cosmologies. Therefore, we correct for the fidu-
cial cosmology [32, 50]. The growth χ2 for the nth recon-
struction hn(z) and parameters p = (Ωm, γ, σ8) is thus
given by

χ2
n,fσ8

(p) = δfσ8n ·C−1
fσ8
· δfσ8n, (21)

where Cfσ8
is the growth covariance matrix, and the ith

component of the residual vector δfσ8n is

δfσ8n|i =
hn(zi)Dn(zi)

(1 + zi)Hfid(zi)dA,fid(zi)
f̂σ8n(zi|p, hn)

− fσ8|i. (22)

The total χ2 for reconstruction n and parameter p is then

χ2
n,tot(p) = χ2

n,fσ8
(p) + χ2

n,SN, (23)

where f̂σ8(zi|p, hn) is the model corresponding to the
expansion history hn and parameters p and fid stands
for the fiducial cosmology used by the survey to estimate
the data point.

The red contours in the (σ8,Ωm) plane in Fig. 4 show
the 1σ and 2σ regions of the parameter space in the flat
ΛCDM case, that is, flat-ΛCDM expansion history and
γ = 0.55. The blue contours show the allowed parameter
space in the model-independent case. Namely, for any
point in the blue contours, one can find at least one re-
construction h(z) which, combined to the corresponding
(Ωm, γ, σ8), gives a better fit to the data than the best-
fit ΛCDM. In the (σ8,Ωm) plane, the model-independent
case is fully consistent with the ΛCDM case. Moreover,
the flexibility of the model-independent approach allows
a larger area of the parameter space to be consistent to
the data. For instance, for larger values of σ8 and lower
values of Ωm, one can find reconstructed expansion histo-
ries that give a better total fit to the data (SNIa+growth)
with respect to the best fit ΛCDM model. For the model-
independent case, γ is fully consistent with 0.55, as ex-
pected from GR. Moreover, lower value of γ, combined
with lower value of Ωm and larger σ8, can also provide
good fit to the data.

We then fix γ = 0.55, as we did for the ΛCDM case,
and show in Fig. 4 the corresponding confidence contours

0.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0
8

0.0

0.2

0.4

0.6

0.8

m

0.00 0.25 0.50 0.75 1.00

FIG. 4: Model independent cosmological constraints on
(Ωm, γ, σ8) from growth and expansion data. The red
contours are the 1σ and 2σ confidence levels for the

ΛCDM case. The blue contours are associated to the
combination of the parameters and reconstructions of

the expansion history that yield a better χ2 with
respect to the best-fit ΛCDM model. The dark-blue

region satisfy positive dark energy density condition as
expressed in equation (24). The green contours show
the model-independent case where we fixed γ = 0.55,

i.e., impose GR. Again, the dark contours satisfy
equation (24).

in green. This effectively allows for a non-ΛCDM back-
ground expansion, with gravity as GR. This time, since
we do not allow γ to vary, the region with low Ωm and
high σ8 is now forbidden.

Finally, following [38], we focus on combinations of
h(z) and Ωm that respect the positive dark energy con-
dition

Ωde(z) = h2(z)− Ωm(1 + z)3 ≥ 0 ∀z. (24)

We show this region in dark-blue (free γ) and dark-
green (fixed γ) in Fig. 4. Imposing equation (24)
effectively forbids large values of Ωm, and dramati-
cally reduces the allowed parameter space of the model-
independent case. The allowed region of the parameter
space is then fully consistent with the model-dependent
case, as in [38]. This is a strong support from the data for
combination of ΛCDM and GR. Comparing our results
here using most recent supernovae (Pantheon compila-
tion) and BAO data (from eBOSS DR14) with what was
reported in [38] we can notice substantial improvement
on the constraints on these three key cosmological pa-
rameters. Based on our analysis we can now put strong
model-independent upper bound limits on Ωm < 0.42 and
γ < 0.58 and a lower bound limit on σ8 > 0.70. These
are in fact model independent constraints on these key
cosmological parameters.
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IV. SUMMARY AND CONCLUSIONS

We used the Pantheon supernovae compilation to re-
construct the expansion history in a model-independent
way, using an improved version of the iterative smooth-
ing method [10, 16–18], which we modified to take into
account the non-diagonal terms of the full covariance
matrix. We then combined the reconstructed expansion
histories to measurements of H(z)rd and dA(z)/rd from
BOSS DR12 and eBOSS DR14Q to model-independently
measure H0rd and test the FLRW metric. Our measure-
ments of H0rd are consistent with the Planck 2015 val-
ues, while the metric test is consistent with a Flat-FLRW
metric. However, for the eBOSS DR14Q data points,
while dA(z)/rd is consistent with the prediction from the
Planck best-fit ΛCDM cosmology, the H(z)rd measure-
ments are slightly but systematically lower. This yields
some hints for a departure from flat-FLRW (Fig. 3) and
supports previous findings of [1] & [2].

We then fit the growth data from redshift space dis-
tortion, mainly from SDSS survey using the model-
independent reconstructions of the expansion history,
and put model-independent constraints on Ωm < 0.42,
γ < 0.58 and σ8 > 0.70. Our measurements are fully
consistent with the ΛCDM model with GR (γ ≈ 0.55),

and do not reveal any tension between the two data sets.

Future surveys, such as the Dark Energy Spectroscopic
Instrument [51, 52], the Large Synoptic Telescope [53],
and WFIRST, will improve the quality and quantity of
data, enabling us to detect any possible deviation from
ΛCDM.
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val, D. Wang, C.-H. Chuang, R. Ruggeri, E.-M. Mueller,
F. Zhu, et al., ArXiv e-prints (2018), 1801.03043.

[20] The Dark Energy Survey Collaboration, T. M. C. Ab-
bott, F. B. Abdalla, A. Alarcon, S. Allam, F. Andrade-
Oliveira, J. Annis, S. Avila, M. Banerji, N. Banik, et al.,
ArXiv e-prints (2017), 1712.06209.

[21] J. E. Bautista, N. G. Busca, J. Guy, J. Rich,
M. Blomqvist, H. du Mas des Bourboux, M. M. Pieri,
A. Font-Ribera, S. Bailey, T. Delubac, et al., A&A 603,
A12 (2017), 1702.00176.

[22] T. Delubac, J. E. Bautista, N. G. Busca, J. Rich,
D. Kirkby, S. Bailey, A. Font-Ribera, A. Slosar, K.-
G. Lee, M. M. Pieri, et al., A&A 574, A59 (2015),
1404.1801.

[23] S. Nesseris and L. Perivolaropoulos, Phys. Rev. D 77,
023504 (2008), 0710.1092.

[24] Y.-S. Song and W. J. Percival, J. Cosmology Astropart.
Phys. 10, 004 (2009), 0807.0810.

[25] V. Acquaviva and E. Gawiser, Phys. Rev. D 82, 082001
(2010), 1008.3392.



8

[26] S. Basilakos, International Journal of Modern Physics D
21, 1250064 (2012), 1202.1637.

[27] A. Shafieloo, A. G. Kim, and E. V. Linder, Phys. Rev. D
87, 023520 (2013), 1211.6128.

[28] A. Pavlov, O. Farooq, and B. Ratra, Phys. Rev. D 90,
023006 (2014), 1312.5285.
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Physics Letters A 32, 1750054-144 (2017), 1610.08965.

[34] L. Kazantzidis and L. Perivolaropoulos, ArXiv e-prints
(2018), 1803.01337.

[35] O. Lahav, P. B. Lilje, J. R. Primack, and M. J. Rees,
MNRAS 251, 128 (1991).

[36] L. Wang and P. J. Steinhardt, ApJ 508, 483 (1998),
astro-ph/9804015.

[37] E. V. Linder, Phys. Rev. D 72, 043529 (2005), astro-
ph/0507263.

[38] B. L’Huillier, A. Shafieloo, and H. Kim, MNRAS 476,
3263 (2018), 1712.04865.

[39] D. Polarski, A. A. Starobinsky, and H. Giacomini, J. Cos-
mology Astropart. Phys. 12, 037 (2016), 1610.00363.

[40] D. Polarski and R. Gannouji, Physics Letters B 660, 439
(2008), 0710.1510.

[41] R. Gannouji, B. Moraes, and D. Polarski, J. Cosmology
Astropart. Phys. 2, 034 (2009), 0809.3374.

[42] H. Motohashi, A. A. Starobinsky, and J. Yokoyama,
Progress of Theoretical Physics 123, 887 (2010),
1002.1141.

[43] C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch,
S. Croom, T. Davis, M. J. Drinkwater, K. Forster,

D. Gilbank, et al., MNRAS 415, 2876 (2011), 1104.2948.
[44] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-

Smith, G. B. Poole, L. Campbell, Q. Parker, W. Saun-
ders, and F. Watson, MNRAS 423, 3430 (2012),
1204.4725.

[45] S. de la Torre and J. A. Peacock, MNRAS 435, 743
(2013), 1212.3615.

[46] C. Howlett, A. J. Ross, L. Samushia, W. J. Percival, and
M. Manera, MNRAS 449, 848 (2015), 1409.3238.

[47] C. Howlett, L. Staveley-Smith, P. J. Elahi, T. Hong, T. H.
Jarrett, D. H. Jones, B. S. Koribalski, L. M. Macri, K. L.
Masters, and C. M. Springob, MNRAS 471, 3135 (2017),
1706.05130.
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